• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas trigonométricas

Derivadas trigonométricas

Mensagempor vmouc » Sáb Jun 04, 2011 14:07

Bem,

Pessoal, acho que ja estou fazendo bagunça nas derivadas.Por gentileza me ajudem!!!

1)Prove usando as regras de seno e cosseno que a derivada de:

a)y= cotg x é y'=-cossec^2x

Minha tentativa (falida):

y= \frac{cos(x)}{sen(x)}

Aí tentei aplicar a regra do quociente:

\frac{(-sen x)(sen x) - (cosx)(cosx)}{sen^2x}

\frac{-sen^2x}{se^2x}-\frac{cos^2x}{sen^2x}\Rightarrow -1-cos^2x (\frac{1}{sen^2x})\Rightarrow-1-cos^2x (cossec^2x)

Ou seja, fiz uma bagunça! Alguem pode me ajudar por gentileza?
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Derivadas trigonométricas

Mensagempor vmouc » Sáb Jun 04, 2011 14:25

Eu acho que errei na interpretação: olha por favor se agora está certo:

\frac{-[(sen^2x) + (cos^2x)]}{sen^2x}\Rightarrow \frac{-1}{sen^2x}\Rightarrow-cossec^2 x
Vinícius Costa
vmouc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Sáb Mar 05, 2011 22:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Derivadas trigonométricas

Mensagempor MarceloFantini » Sáb Jun 04, 2011 15:02

Agora está certo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}