por legendkiller2009 » Qua Jun 01, 2011 19:18
Gostava que me ajudassem pois nâo estou a conseguir resolver este problema de matemática.
É o seguinte:
tenho 3 rectas : y = exp(x) ; y = 1 - X ; x=1
e gostava de saber a região delimitada pelas rectas utilizando integrais.
Eu já tentei fazer mas encalho sempre nas intersecções das rectas.
Se alguem me ajudar fico muito agradecido.
-
legendkiller2009
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qua Jun 01, 2011 19:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
por carlosalesouza » Qua Jun 01, 2011 19:37
Primeiro, falemos em linhas, não retas... pois

é uma curva...
Depois, lembremos que a área de uma curva é a soma dos retângulos com altura igual f(x) - g(x) e largura igual ao intervalo dividido pelo número de retângulos quando este número tende ao infinito, não é?
Então, veja que a altura dos retângulos é delimitada por

e y = 1 com interseção em x = 0, que será a primeira interseção... a outra interseção será em x=1, que é o outro delimitador da área...
Então, a área será dada por:
![\\
A=\int_0^1[ e^x-1 ]dx\\
A=[ e^x-x ]_0^1\\
A=[ e^1-1 ]-[e^0-0]\\
A=[ e-1 ] - [1]\\
A=e-1-1\\
A=(e-2)u.a. \\
A=\int_0^1[ e^x-1 ]dx\\
A=[ e^x-x ]_0^1\\
A=[ e^1-1 ]-[e^0-0]\\
A=[ e-1 ] - [1]\\
A=e-1-1\\
A=(e-2)u.a.](/latexrender/pictures/d8f5578b02ad9987b4992abbaf54757a.png)
Correto?
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por LuizAquino » Qui Jun 02, 2011 14:55
A figura abaixo ilustra o exercício.

- área-A.png (6.31 KiB) Exibido 2057 vezes
Para determinar a interseção entre

e
g(
x) = 1 -
x, você precisaria resolver a equação
f(
x) =
g(
x), ou seja,

. Acontece que não temos um meio analítico de determinar a solução dessa equação. Porém, não é difícil perceber que
x = 0 é a solução. Ora, como
f(0)=
g(0)=1, temos que o ponto de interseção é (0, 1).
Por outro lado, temos as retas
x = 1 e
g(
x) = 1 -
x. Ora, note que o ponto de interseção necessariamente tem o formato (1, y). Para determinar y, basta calcular y =
g(1) = 0. Portanto, o ponto de interseção é (1, 0).
Por fim, temos a reta
x = 1 e a curva

. Ora, note que o ponto de interseção necessariamente tem o formato (1, y). Para determinar y, basta calcular y =
f(1) =
e. Portanto, o ponto de interseção é (1,
e).
Considerando essas informações, temos que:
![A = \int_0^1 e^x - (1 - x)\,dx = \left[e^x - x + \frac{x^2}{2}\right]_0^1 = e - \frac{3}{2} A = \int_0^1 e^x - (1 - x)\,dx = \left[e^x - x + \frac{x^2}{2}\right]_0^1 = e - \frac{3}{2}](/latexrender/pictures/1f651390864cc7f1c3e5c3c97e6093e3.png)
u. a. (unidade de área).
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por carlosalesouza » Qui Jun 02, 2011 18:35
Perdão... quando calculei, vi as funções incompletas... y= 1-X... tava tudo emendado, eu vi y = 1...
Luiz, meu caro Luiz... sempre tambando as minhas gafes... rs
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- DÚVIDA URGENTE!!
por tatahsooares » Seg Dez 13, 2010 01:32
- 0 Respostas
- 1329 Exibições
- Última mensagem por tatahsooares

Seg Dez 13, 2010 01:32
Matemática Financeira
-
- Dúvida urgente
por deborakisses » Dom Mai 08, 2011 16:05
- 1 Respostas
- 1329 Exibições
- Última mensagem por Molina

Dom Mai 08, 2011 18:19
Geometria Espacial
-
- Dúvida - urgente!
por jamiel » Ter Jun 14, 2011 15:45
- 9 Respostas
- 4324 Exibições
- Última mensagem por jamiel

Ter Jun 14, 2011 21:04
Logaritmos
-
- Duvida Urgente!
por RJCT » Qua Jun 13, 2012 18:50
- 1 Respostas
- 1383 Exibições
- Última mensagem por LuizAquino

Sex Jun 15, 2012 16:52
Cálculo: Limites, Derivadas e Integrais
-
- Duvida [Urgente] - Otimização
por Asustek27 » Qui Mai 27, 2010 11:26
- 3 Respostas
- 1983 Exibições
- Última mensagem por MarceloFantini

Sex Mai 28, 2010 08:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.