• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida URGENTE

Duvida URGENTE

Mensagempor legendkiller2009 » Qua Jun 01, 2011 19:18

Gostava que me ajudassem pois nâo estou a conseguir resolver este problema de matemática.

É o seguinte:

tenho 3 rectas : y = exp(x) ; y = 1 - X ; x=1

e gostava de saber a região delimitada pelas rectas utilizando integrais.

Eu já tentei fazer mas encalho sempre nas intersecções das rectas.

Se alguem me ajudar fico muito agradecido.
legendkiller2009
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Jun 01, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: informatica
Andamento: cursando

Re: Duvida URGENTE

Mensagempor carlosalesouza » Qua Jun 01, 2011 19:37

Primeiro, falemos em linhas, não retas... pois e^x é uma curva...

Depois, lembremos que a área de uma curva é a soma dos retângulos com altura igual f(x) - g(x) e largura igual ao intervalo dividido pelo número de retângulos quando este número tende ao infinito, não é?

Então, veja que a altura dos retângulos é delimitada por y=e^x e y = 1 com interseção em x = 0, que será a primeira interseção... a outra interseção será em x=1, que é o outro delimitador da área...

Então, a área será dada por:

\\
A=\int_0^1[ e^x-1 ]dx\\
A=[ e^x-x ]_0^1\\
A=[ e^1-1 ]-[e^0-0]\\
A=[ e-1 ] - [1]\\
A=e-1-1\\
A=(e-2)u.a.

Correto?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Duvida URGENTE

Mensagempor LuizAquino » Qui Jun 02, 2011 14:55

A figura abaixo ilustra o exercício.
área-A.png
área-A.png (6.31 KiB) Exibido 2060 vezes


Para determinar a interseção entre f(x) = e^x e g(x) = 1 - x, você precisaria resolver a equação f(x) = g(x), ou seja, e^x = 1 - x . Acontece que não temos um meio analítico de determinar a solução dessa equação. Porém, não é difícil perceber que x = 0 é a solução. Ora, como f(0)=g(0)=1, temos que o ponto de interseção é (0, 1).

Por outro lado, temos as retas x = 1 e g(x) = 1 - x. Ora, note que o ponto de interseção necessariamente tem o formato (1, y). Para determinar y, basta calcular y = g(1) = 0. Portanto, o ponto de interseção é (1, 0).

Por fim, temos a reta x = 1 e a curva f(x) = e^x. Ora, note que o ponto de interseção necessariamente tem o formato (1, y). Para determinar y, basta calcular y = f(1) = e. Portanto, o ponto de interseção é (1, e).

Considerando essas informações, temos que:
A = \int_0^1 e^x - (1 - x)\,dx = \left[e^x - x + \frac{x^2}{2}\right]_0^1 = e - \frac{3}{2} u. a. (unidade de área).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Duvida URGENTE

Mensagempor carlosalesouza » Qui Jun 02, 2011 18:35

Perdão... quando calculei, vi as funções incompletas... y= 1-X... tava tudo emendado, eu vi y = 1...

Luiz, meu caro Luiz... sempre tambando as minhas gafes... rs

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?