• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teoria de grupos

Teoria de grupos

Mensagempor Luiz Augusto Prado » Seg Mai 30, 2011 21:37

Olá amigos.

Quem tem interesse em formar um grupo de estudos sobre teoria de grupos?

Seja A um conjunto não vazio e * uma operação em A.
A estrutura (A,*) é denomidada um:

1. semi-grupo se * uma operação associativa;
2. monoide se * é uma operação associativa e tem um elemento neutro e pertencente a A;
3. grupo se * é associativa, tem um elemento neutro 'e' pertencente a A, e cada elemento 'a' pertencente a A invertertivel na operação *.

Estava estudando sobre isso utilizando o exmplo da rotação e reflexão de quadrados, onde as posições dos numeros mudavam dependendo da rotação ou reflexão.
Que operações representariam a rotação e a reflexão? Neste caso, como eu demonstraria o valor neutro?
Entendi que para uma rotação, eu poderia "somar 90º" para formar 4 posições diferentes para o quadrado.
A operação referida neste caso é mais amplo que os operadores matemáticos?
Que operação representa a reflexão?

Onde encontro mais material on-line sobre isso?
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Teoria de grupos

Mensagempor Luiz Augusto Prado » Ter Mai 31, 2011 19:21

Inicio da melhor explicacao que eu vi ate agora:

http://www.youtube.com/watch?v=MTHojF7OkYk
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.