por elbert005 » Ter Mai 31, 2011 15:41
Olá amigos,
Estou com um grande problema para resolução de uma atividade na qual precisarei apresentar amanhã na aula de cálculo.
O problema é o seguinte:
Encontre o ponto P na parábola y=x² que está mais próximo de (3,0) . Justifique sua resposta que o ponto que você encontrou é realmente o mais próximo.
Para resolver eu isolei x e estou trabalhando em termos de y, mais consigo chegar na resposta (1,1). Mas não acho uma maneira de provar essa reposta.
Preciso de ajuda!!!
Elbert
-
elbert005
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Mai 31, 2011 15:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Ter Mai 31, 2011 17:23
Em exercícios de otimização você precisa primeiro obter a função que deseja otimizar. Em boa parte dos exercícios a função não é fornecida diretamente.
Pois bem, perceba que todos os pontos sobre a parábola y = x² têm o formato (k, k²), para algum real k.
Agora, basta armar a função que fornece a distância desse ponto ao ponto (3, 0).
Vale lembrar que dos conhecimentos de Geometria Analítica sabemos que a distância do ponto P = (x0, y0) à Q = (x1, y1) é dada por:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por elbert005 » Ter Mai 31, 2011 17:48
Boa tarde Luiz,
Eu tenho a seguinte dúvida:

-
elbert005
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Mai 31, 2011 15:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por elbert005 » Ter Mai 31, 2011 17:50
consequentemente a imagem em y= 1² = 1
??????
seria um teste da segunda derivada???
-
elbert005
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Mai 31, 2011 15:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Ter Mai 31, 2011 18:08
D² = (x - 3)² +(x²)²
f'(x) = 2(x-3) + 2(x²).2x
f(x)' = 2x - 6 + 4x³
então o ponto que zera a função é 1 mas como consigo provar isso?
Ora, se você quer comprovar que x = c é raiz da função f(x), então basta você exibir que f(c) = 0. Mas, se você quer explicar como obteve que x = c é uma raiz, aí é outra história. No caso desse exercício, como temos uma equação polinomial, você poderia usar o
Teorema das Raízes Racionais.
Vale lembrar que para concluir que (1, f(1)) é o ponto de mínimo você ainda deve calcular a segunda derivada e verificar se f''(1) > 0.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Otimizacao
por Taisa » Sex Nov 12, 2010 13:53
- 1 Respostas
- 2017 Exibições
- Última mensagem por MarceloFantini

Sex Nov 12, 2010 14:36
Cálculo: Limites, Derivadas e Integrais
-
- Otimização
por AlbertoAM » Sáb Mai 14, 2011 21:36
- 4 Respostas
- 2300 Exibições
- Última mensagem por AlbertoAM

Dom Mai 15, 2011 19:23
Cálculo: Limites, Derivadas e Integrais
-
- Otimizacao !!!!!!
por andersoneng » Qua Jun 27, 2012 12:26
- 7 Respostas
- 5001 Exibições
- Última mensagem por andersoneng

Qui Jun 28, 2012 10:24
Cálculo: Limites, Derivadas e Integrais
-
- Otimização
por Jhonata » Seg Fev 25, 2013 19:24
- 1 Respostas
- 1309 Exibições
- Última mensagem por Russman

Seg Fev 25, 2013 20:28
Cálculo: Limites, Derivadas e Integrais
-
- oTIMIZAÇÃO
por Pinheiro Rosa Victor » Qui Mai 02, 2013 11:11
- 0 Respostas
- 1175 Exibições
- Última mensagem por Pinheiro Rosa Victor

Qui Mai 02, 2013 11:11
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.