• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indeterminação (infinito-infinito)

Indeterminação (infinito-infinito)

Mensagempor Marcampucio » Seg Mar 16, 2009 00:16

Olá,

estou encrencado com mais um limite... não consegui achar uma saída.

\lim_{x\to+\infty}\left(\sqrt{3x^2+x}-2x\right)
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Indeterminação (infinito-infinito)

Mensagempor Molina » Seg Mar 16, 2009 00:34

Boa noite, amigo.

Uma sugestão de quando aparecer raiz no limite é multiplicar em cima e embaixo pelo conjugado.
Normalmente (nao disse sempre) é uma boa saída.

Boa tentativa e coloque aqui se tiver mais dúvidas.

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Indeterminação (infinito-infinito)

Mensagempor Marcampucio » Seg Mar 16, 2009 14:50

Oi molina,

agradeço a atenção. Já fiz isso, depois apliquei l'Hopital e a indeterminação continuou. Não encontrei um tratamento algébrico adequado.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Indeterminação (infinito-infinito)

Mensagempor carlinhos23 » Seg Mai 30, 2011 03:20

muito facil cara cara dividir isso por menos 1 e aplicar o conjugado de por o x de maior elevacao em evidencia.
carlinhos23
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mai 30, 2011 03:18
Formação Escolar: GRADUAÇÃO
Área/Curso: 2/3 ano eng. computacao sabe como é ne
Andamento: cursando

Re: Indeterminação (infinito-infinito)

Mensagempor stuart clark » Seg Mai 30, 2011 06:21

\lim_{x \to +\infty}\left(\sqrt{3x^2+x}-2x\right) = \lim_{x \to +\infty}\frac{\sqrt{3x^2+x}-2x}{\sqrt{3x^2+x}+2x}\times \left(\sqrt{3x^2+x}+2x\right)

\lim_{x \to +\infty} \frac{3x^2+x-4x^2}{\sqrt{3x^2+x}+2x}

\lim_{x \to +\infty}\frac{x-x^2}{\sqrt{3x^2+x}+2x}

\lim_{x \to +\infty}\frac{x^2.\left(1-\frac{1}{x}\right)}{x.\left(\sqrt{3+\frac{1}{x}}+2}\right)}=+\infty
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?