O problema parece ser simples, mas já tentei resolver várias vezes e não consegui. Segue o mesmo abaixo:
"A função z = f (x,y) tem no ponto (1,2) derivada direcional igual a
, na direção do vetor v = (2,2), e derivada direcional igual a -1 na direção do vetor u = (0,1). Nessas condições pode-se afirmar:a) O vetor gradiente, no ponto (1,2), é igual a (3,-1). Verdadeiro ou falso?
b) Na direção do vetor (2,6) não há variação da função. Verdadeiro ou falso?"
Estou com dificuldade para resolver esse problema porque não foi dada a função f(x,y).

é dada por:
.
.
temos que
.
temos que
.
. Isto é, basta verificar se é válido que
.
é verdade que
. Para isso, aqui vai uma dica: da segunda informação do exercício, temos que
.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.