por baianinha » Ter Mai 24, 2011 22:15
Como resolvo essa equação modular?

????
-
baianinha
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qui Dez 16, 2010 12:15
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: matematica
- Andamento: cursando
por Molina » Sex Mai 27, 2011 20:30
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por LuizAquino » Sex Mai 27, 2011 22:05
Primeiro, vale lembrar que temos a
inequação modular 
e não uma "equação modular".
Como lembrou o colega Molina, nós teremos dois casos:
(i)

, se

;
(ii)

, se

.
Note que isso é equivalente a:
(i)

, se

ou

;
(ii)

, se

.
Resolvendo (i), temos que
![S_1 = \{(-\infty,\, -\sqrt{2}] \cup [\sqrt{2},\, +\infty)\}\cap [-1,\,3] = [\sqrt{2},\, 3] S_1 = \{(-\infty,\, -\sqrt{2}] \cup [\sqrt{2},\, +\infty)\}\cap [-1,\,3] = [\sqrt{2},\, 3]](/latexrender/pictures/3d510cc2656adf7fa8a5fb34020faffb.png)
.
Já resolvendo (ii), temos que
![S_2 = (-\sqrt{2},\,\sqrt{2}) \cap \{(-\infty,\,-\sqrt{2} - 1] \cup [\sqrt{2} - 1,\, +\infty)\}= [\sqrt{2} - 1,\, \sqrt{2}) S_2 = (-\sqrt{2},\,\sqrt{2}) \cap \{(-\infty,\,-\sqrt{2} - 1] \cup [\sqrt{2} - 1,\, +\infty)\}= [\sqrt{2} - 1,\, \sqrt{2})](/latexrender/pictures/9f5daaeccdfafa694dacbef10f7fbd43.png)
.
Desse modo, a solução será
![S = S_1 \cup S_2 = [\sqrt{2} - 1,\, 3] S = S_1 \cup S_2 = [\sqrt{2} - 1,\, 3]](/latexrender/pictures/6b31a093212ffd23ad80b33706a2cfae.png)
Vale a pena visualizar a interpretação geométrica dessa inequação, que é ilustrada na figura abaixo.

- interpretacao-geometrica.png (6.53 KiB) Exibido 1929 vezes
ObservaçãoVale destacar o desenvolvimento abaixo:



SugestãoBaianinha, eu gostaria de sugerir que você assista as vídeo-aulas do Nerckie sobre inequações modulares. O endereço do canal é:
http://www.youtube.com/nerckieSe suas dúvidas persistirem, então poste-as aqui.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3410 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- Equação modular
por amandactdas » Qui Jul 23, 2009 13:14
- 1 Respostas
- 2784 Exibições
- Última mensagem por Molina

Qui Jul 23, 2009 15:26
Funções
-
- Equação modular.
por JoaoGabriel » Sáb Set 18, 2010 11:01
- 3 Respostas
- 2497 Exibições
- Última mensagem por JoaoGabriel

Sáb Set 18, 2010 14:00
Funções
-
- Equação Modular
por Rafael16 » Dom Mar 04, 2012 14:07
- 3 Respostas
- 2135 Exibições
- Última mensagem por LuizAquino

Seg Mar 05, 2012 14:23
Equações
-
- [Equação Modular]
por marilgomes » Sáb Jun 01, 2013 13:44
- 0 Respostas
- 950 Exibições
- Última mensagem por marilgomes

Sáb Jun 01, 2013 13:44
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.