• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação Modular

Equação Modular

Mensagempor baianinha » Ter Mai 24, 2011 22:15

Como resolvo essa equação modular?
\left|{x}^{2}-2 \right|\leq2x+1????
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Equação Modular

Mensagempor Molina » Sex Mai 27, 2011 20:30

Boa noite.

Primeiramente considere o módulo maior ou igual a zero. Assim, temos que:

\left|{x}^{2}-2 \right|\leq2x+1

{x}^{2}-2 \leq2x+1

{x}^{2} -2x -3 \leq 0

S_1=\{x \in R / -1 \leq x \leq 3 \}

E considere o módulo menor que zero temos que:

\left|{x}^{2}-2 \right|\leq2x+1

-{x}^{2}+2 \leq2x+1

0  \leq {x}^{2} + 2x -1

S_2=\{x \in R / x \leq -1 - \sqrt{2}~e~x \geq \sqrt{2} -1  \}


Fazendo S_1 \cap S_2 obtemos:

S=\{x \in R / \sqrt{2} -1 \leq x \leq 3 \}


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Inequação Modular

Mensagempor LuizAquino » Sex Mai 27, 2011 22:05

Primeiro, vale lembrar que temos a inequação modular \left|{x}^{2}-2 \right|\leq 2x+1 e não uma "equação modular".

Como lembrou o colega Molina, nós teremos dois casos:
(i) x^2 - 2 \leq 2x + 1, se x^2 - 2\geq 0 ;

(ii) -(x^2 - 2) \leq 2x + 1, se x^2 - 2 < 0 .

Note que isso é equivalente a:
(i) x^2 -2x - 3 \leq 0, se x \leq  -\sqrt{2} ou x \geq  \sqrt{2} ;

(ii) x^2 + 2x - 1 \geq 0, se -\sqrt{2} < x < \sqrt{2}.

Resolvendo (i), temos que S_1 = \{(-\infty,\, -\sqrt{2}] \cup [\sqrt{2},\, +\infty)\}\cap [-1,\,3] = [\sqrt{2},\, 3] .

Já resolvendo (ii), temos que S_2 = (-\sqrt{2},\,\sqrt{2}) \cap \{(-\infty,\,-\sqrt{2} - 1] \cup [\sqrt{2} - 1,\, +\infty)\}= [\sqrt{2} - 1,\, \sqrt{2}) .

Desse modo, a solução será S = S_1 \cup S_2 = [\sqrt{2} - 1,\, 3]

Vale a pena visualizar a interpretação geométrica dessa inequação, que é ilustrada na figura abaixo.
interpretacao-geometrica.png
interpretacao-geometrica.png (6.53 KiB) Exibido 1928 vezes


Observação
Vale destacar o desenvolvimento abaixo:
-(x^2 - 2) \leq 2x + 1
x^2 - 2 \geq - (2x + 1)
x^2 - 2 + (2x + 1) \geq 0
x^2 + 2x- 1 \geq 0

Sugestão
Baianinha, eu gostaria de sugerir que você assista as vídeo-aulas do Nerckie sobre inequações modulares. O endereço do canal é:
http://www.youtube.com/nerckie
Se suas dúvidas persistirem, então poste-as aqui.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.