• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor mínimo

Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 19:53

Achar o valor mínimo de \frac{x^4+x^2+5}{(x+1)^2}

A-1
B- 0,95
C-0,85
D- 0,75
E- 0,65

Gabarito diz que é a letra B.

Alguém tem alguma dica.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor MarceloFantini » Qui Mai 26, 2011 20:27

Minha primeira sugestão seria derivar e igualar a zero, mas não sei se "poderia" fazer isso. Já tem essas ferramentas?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 20:31

Se nós derivar isso, vamos ficar com um caminhão do 4 grau.

Teria uma outra sugestão?
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 20:31

Se nós derivar isso, vamos ficar com um "caminhão" do 4 grau.

Teria uma outra sugestão?

Saiu duplicado.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor LuizAquino » Qui Mai 26, 2011 22:23

Abaixo há duas ilustrações do gráfico da função f(x) = \frac{x^4+x^2+5}{(x+1)^2}.

gráfico.png
gráfico.png (16.61 KiB) Exibido 7996 vezes


gráfico-zoom.png
gráfico-zoom.png (17.7 KiB) Exibido 7996 vezes


Note que o mínimo dessa função é algo no intervalo [1,5; 2].

Para essa função em particular, determinar analiticamente o valor de seu mínimo através de suas derivadas é algo bastante trabalhoso. Nesse caso, um método numérico é mais conveniente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 22:37

Eu não posso afirmar, mas me disseram que está questão estava em um livro de questões de vestibulares militares.

Como é que eu iria resolver isso numa prova? Olhando para o gráfico eu não consigo eliminar nada.

Eu até usei o Wolfram para ver qual seria o gráfico, mas algebricamente ainda não consegui desenvolver.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 23:00

Certamente o gabarito deve estar errado.

Observem comigo e se eu estiver errado apontem meu erro.

Para que a função seja a mínima, o denoninador deve ser o máximo, logo devemos ter o maior valor de x(no intervalo 0 até 1), logo temos como resposta a Letra A.

Alguém discorda?
Editado pela última vez por FilipeCaceres em Qui Mai 26, 2011 23:25, em um total de 1 vez.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor LuizAquino » Qui Mai 26, 2011 23:21

Como eu falei, analiticamente seria muito trabalhoso! Eu acredito ser improvável que esse exercício estivesse em um vestibular. E mesmo que estivesse, há uma boa possibilidade dele ter sido anulado.

Para determinar o mínimo dessa função, vamos precisar calcular a sua derivada.

Temos que f^\prime(x) = \frac{2(x^{4} + 2x^{3} + x - 5)}{(x + 1)^{3}} .

Para resolver a equação f'(x) = 0, teremos que determinar as raízes de uma equação polinomial de quarto grau dada por: x^{4} + 2x^{3} + x - 5 = 0 .

Note que essa equação não tem solução racional, o que já dificulta a sua solução.

Para resolvê-la analiticamente, você precisa aplicar o Método de Ferrari. Leia mais a respeito, por exemplo, no endereço:
Equação do quarto grau -- http://pt.wikipedia.org/wiki/Equa%C3%A7 ... uarto_grau

Para que a função seja a mínima o denominador deve ser o máximo, logo devemos ter o maior valor de x que nas alternativas corresponde a letra A.

Você não está levando em consideração que o numerador também está variando. Você não pode aplicar esse raciocínio nesse caso. Além disso, não confunda o valor mínimo de uma função com o valor em seu domínio que é associado a ele. Por exemplo, a função f(x) = x² - 1 tem valor mínimo igual a -1, que está associado a x = 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 23:31

Acabei editando antes de ver que você havia respondido, editei pois ficou muito vago, na verdade eu queria dizer que x so pode variar de 0 ate 1, pois como temos um numerador do quarto grau, qualquer valor acima de 1 ou abaixo de zero ele "crescerá" mais rápido, enquando que no intervalo de 0 até 1 ele decrescerá.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 23:38

Estava me esquecendo podemos ter os negativos também, logo podemos ter (-1,1].

Acho que agora está mais completo. :-D
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor LuizAquino » Qui Mai 26, 2011 23:43

O seu raciocínio não está adequado.

Tanto é assim que, utilizando métodos numéricos, determinamos que o mínimo dessa função é aproximadamente 1,7397, sendo que ele ocorre para x igual a aproximadamente 1,0831.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 23:45

Eu estava relendo com calma
Além disso, não confunda o valor mínimo de uma função com o valor em seu domínio que é associado a ele.


E percebi que estava confundindo, e deu exatamente isso usando o wolfram.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor FilipeCaceres » Qui Mai 26, 2011 23:47

Então não tem resposta.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Valor mínimo

Mensagempor demolot » Sex Mai 27, 2011 19:31

se for de escolha multiplica podes sempre usar a calculadora gráfica, ela consegue calcular o mínimo.
Analiticamente, 1º pensei na derivada mas ia ser muito trabalhoso fazer uma equação de 4º grau, depois se igualarmos a 0 e o denominador diferente de 0 continuamos com uma de 4º grau nao vejo outra solução se nao a calculadora
demolot
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Dez 11, 2010 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Informatica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?