• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos - ITA nível fácil

Conjuntos - ITA nível fácil

Mensagempor ingridgusmao » Qua Mai 25, 2011 01:46

eu tava resolvendo umas questaos sobre conjuntos, dai que surge essa do ITA:

1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C:
I. Se A ? B e B ? C então A ? C.
II. Se A ? B e B ? C então A ? C.
III. Se A ? B e B ? C então A ? C.
Estão corretas:
(A) nenhuma das alternativas
(B) somente a alternativa I
(C) somente as alternativas I e II
(D) somente as alternativas II e III
(E) todas as alternativas


Eu marquei a alternativa "E", mas no livro está "B". Procurei essa questao na internet inteira e nao acho a resposta. Quer dizer, ter a resposta tem sim, mas eu gostaria de saber o porquê que a alternativa B é a correta. Eu tentei, raciocinei... e estou aguardando uma ajuda.
ingridgusmao
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 25, 2011 01:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando

Re: Conjuntos - ITA nível fácil

Mensagempor FilipeCaceres » Qua Mai 25, 2011 01:58

Veja que:
I – Verdadeira,
Se A é um conjunto pertencente a B, e todo conjunto B está contido em C, então é correto concluir que A ? C.

II - Falso,
Se B pertence a C, então C é um conjunto no qual, em particular, existe B. Desta forma não é possível garantir que elementos isolados de B,
também estejam em C, logo não é possível garantir que A ? C.

III - Falso,
Se B pertence a C, então C é um conjunto de conjuntos no qual, em particular, existe B. Portanto, não é possível garantir que as partes de B,
também estejam em C, logo não é possível garantir que A ? C.

PS: Uma pergunta, qual livro você está utilizando? E você saberia dizer em qual ano caiu está questão no ITA?

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Conjuntos - ITA nível fácil

Mensagempor ingridgusmao » Qua Mai 25, 2011 02:21

Filipe, em primeiro lugar, gostaria de dizer obrigada por responder a questão. Eu realmente estou muito grata, faz mais ou menos 4 horas que estou rodando na internet atrás da resolução desta questão, já fui até em fóruns estrangeiros, rsrs. Mas enfim, o livro do qual tirei essa questão, é do meu próprio curso pré-vestibular. Segundo o livro, esta questão é de 2010. Entretanto, quando eu fui atrás da resolução da mesma no site do ITA, não achei nem a questão, tampouco a resolução, rs. Todavia encontrei outras questões bem parecidas lá.

Abraço e mais uma vez, obrigada :)
ingridgusmao
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 25, 2011 01:39
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D