• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polígonos

Polígonos

Mensagempor Diana » Seg Mai 23, 2011 22:10

Um polígono convexo A, possui 3 lados a mais que um poligono convexo B, quanto às diagonais, o polígono A possui 12 diagonais a mais que o polígono B. Determine quais são os polígonos A e B.
Resposta: heptágono e quadrilátero
Formula d=(n-3).n / 2

Eu faço e não chego a nada, o máximo que eu consegui foi que n de A é o n de B mais 4, e esta errado...
Diana
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 03, 2011 00:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Polígonos

Mensagempor FilipeCaceres » Seg Mai 23, 2011 22:27

Façamos o seguinte,
n_a=lados de A
n_b=lados de B

Assim temos,
n_a=n_b +3
d_a=d_b+12

Logo,
(n_a-3).\frac{n_a}{2}=(n_b-3).\frac{n_b}{2}

Substituindo o valor de n_a
(n_b+\cancel{3}-\cancel{3}).\frac{n_b+3}{2}

\cancel{n_b^2}+3n_b=\cancel{n_b^2}-3n_b+24

6n_b=24

n_b=4, que corresponde ao quadrado.

n_a=n_b+3=4+3

n_a=7, que corresponde ao heptágono.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Polígonos

Mensagempor Diana » Seg Mai 23, 2011 22:45

Eu entendi, mas mais ou menos. entendi até quando você substituiu os valores, mas nao encontrei de onde saiu o 24, e por que o 2 em baixo nao ta mais la. será que teria como voce me explicar? desculpa...
Diana
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 03, 2011 00:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Polígonos

Mensagempor FilipeCaceres » Seg Mai 23, 2011 22:56

Escrevendo errado vais er difícil de entender mesmo :-D
Logo,
(n_a-3).\frac{n_a}{2}=(n_b-3).\frac{n_b}{2}

Substituindo o valor de n_a
(n_b+\cancel{3}-\cancel{3}).\frac{n_b+3}{2}


Corrigindo.
Sabemos que:
d_a=d_b+12

Assim temos,
(n_a-3).\frac{n_a}{2}=(n_b-3).\frac{n_b}{2}+12

Substituindo o valor de n_a ,
(n_b+\cancel{3}-\cancel{3}).\frac{(n_b+3)}{2}=(n_b-3).\frac{n_b}{2}+12

Multiplicando tudo por 2 e resolvendo temos
\cancel{n_b^2}+3n_b=\cancel{n_b^2}-3n_b+24

O resto é igual.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Polígonos

Mensagempor Diana » Seg Mai 23, 2011 23:19

Agora sim! entendi direitinho, brigadão mesmo! abraço
Diana
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 03, 2011 00:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?