• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas - dúvidas

Derivadas - dúvidas

Mensagempor [icaro] » Sáb Mai 21, 2011 19:06

Não estou conseguindo resolver as seguintes derivadas:

A) f(a)=\frac{{e}^{-a²}}{(1+a²)²}
B) f(x)= (x²+1){e}^{\frac{x³+x²}{x²+1}}
c) f(x)= ln(\frac{1}{x}+\frac{1}{x²})

Tentei, mas só chego em resultados errados :n:
[icaro]
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mar 09, 2011 00:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências e tecnologia
Andamento: cursando

Re: Derivadas - dúvidas

Mensagempor LuizAquino » Dom Mai 22, 2011 11:30

Primeiro, vamos arrumar o que você escreveu:
a) f(a)=\frac{{e}^{-a^2}}{\left(1+a^2\right)^2}

b) f(x)= (x^2+1){e}^{\frac{x^3+x^2}{x^2+1}}

c) f(x)= \ln\left(\frac{1}{x}+\frac{1}{x^2}\right)

Vale destacar que o seu erro ao usar o LaTeX foi escrever x² e x³ ao invés de x^2 e x^3. Ou seja: não use os atalhos de teclado para escrever as potências.

Quanto aos exercícios, quais foram as suas dificuldades ao resolver essas derivadas?

Muito provavelmente você está errando a aplicação da regra da cadeia.

Veja, por exemplo, a solução do primeiro exercício:
f^\prime(a)=\frac{\left({e}^{-a^2}\right)^\prime \left(1+a^2\right)^2 - {e}^{-a^2}\left[\left(1+a^2\right)^2\right]^\prime}{\left[\left(1+a^2\right)^2\right]^2}

f^\prime(a)=\frac{{e}^{-a^2}\left(-a^2\right)^\prime \left(1+a^2\right)^2 - 2{e}^{-a^2}\left(1+a^2\right)\left(1+a^2\right)^\prime}{\left(1+a^2\right)^4}

f^\prime(a)=\frac{-2a{e}^{-a^2}\left(1+a^2\right)^2 - 4a{e}^{-a^2}\left(1+a^2\right)}{\left(1+a^2\right)^4}

f^\prime(a)=\frac{-2a{e}^{-a^2}\left(1+a^2\right) - 4a{e}^{-a^2}}{\left(1+a^2\right)^3}

f^\prime(a)=\frac{-2a{e}^{-a^2}\left(3+a^2\right)}{\left(1+a^2\right)^3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivadas - dúvidas

Mensagempor [icaro] » Dom Mai 22, 2011 12:54

Eu comecei atribuindo {-a}^{2} como "u" e utilizei os operadores \frac{df}{dx}=\frac{df}{du}\frac{du}{dx} chegando ao resultado de {{e}^{-a}}^{2} \left(-2a \right)

depois apliquei a regra da cadeia chegando a \frac{{{e}^{-a}}^{2} \left(-2a \right)\left(1+{a}^{2} \right)^2 - \left({4a}^{3}+4a \right){{e}^{-a}}^{2}}{\left(1+{a}^{2} \right)^4}
[icaro]
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Mar 09, 2011 00:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências e tecnologia
Andamento: cursando

Re: Derivadas - dúvidas

Mensagempor LuizAquino » Dom Mai 22, 2011 13:17

Sendo assim, a sua dúvida está em algo mais básico ainda. Você não soube efetuar a fatoração e em seguida fazer as simplificações.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}