por Claudin » Qua Mai 18, 2011 18:32
Alguem para ajudar a resolver tal exercicio?

Obrigado
Editado pela última vez por
Claudin em Qua Mai 18, 2011 20:47, em um total de 2 vezes.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Qua Mai 18, 2011 19:55
Você já fez está segunda pergunta, veja
viewtopic.php?f=120&t=4748&p=15810
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Molina » Qua Mai 18, 2011 20:02
Boa noite, Claudin.
Na primeira, basta ajustar essa "fração de fração" para apenas uma fração, que sai rapidinho, veja:

Quanto ao segundo limite, eu já dei uma explicação
aqui e você falou que havia entendido...
Qualquer dúvida avise!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Claudin » Qua Mai 18, 2011 20:45
Desculpe pelo erro. kkkkkkk
Achei essa resolução da segunda aqui, minutos após eu ter feito a pergunta!
Obrigado Molina
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limite] Dúvida limite com raizes
por rqaugusto » Dom Abr 30, 2017 23:23
- 0 Respostas
- 3019 Exibições
- Última mensagem por rqaugusto

Dom Abr 30, 2017 23:23
Cálculo: Limites, Derivadas e Integrais
-
- Duvida - Limite
por Claudin » Qua Mai 18, 2011 21:19
- 6 Respostas
- 3057 Exibições
- Última mensagem por Claudin

Qui Mai 19, 2011 12:31
Cálculo: Limites, Derivadas e Integrais
-
- Duvida - Limite
por Claudin » Qui Mai 19, 2011 09:20
- 5 Respostas
- 2855 Exibições
- Última mensagem por Claudin

Dom Mai 22, 2011 16:19
Cálculo: Limites, Derivadas e Integrais
-
- Duvida - Limite
por Claudin » Sáb Mai 21, 2011 16:17
- 18 Respostas
- 10321 Exibições
- Última mensagem por Claudin

Qui Mai 26, 2011 15:32
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] duvida
por beel » Sáb Set 03, 2011 20:32
- 4 Respostas
- 1766 Exibições
- Última mensagem por beel

Dom Set 04, 2011 15:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.