• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prova de função crescente.

Prova de função crescente.

Mensagempor TheoFerraz » Seg Mai 16, 2011 20:39

Na lista de exercicios o professor pegou esse exercicio de um livro ai:

Seja f: I \rightarrow J uma função bijetora. prove que ela é ou crescente, ou decrescente (monótona)

a) pelo método da análise real.

b) pelo método das derivadas.

Olha, talvez eu até consiga por derivadas, mas eu mal sei o que é bijetora! se alguém puder me ajudar seria ótimo!
Ah, e sobre essas demonstrações ai, principalmente as analíticas, existe algum livro, algum lugar que eu possa aprender essas coisas? como provar por absurdo, indução finita, essas coisas? Eu faço física mas o meu professor da a aula como se nós fizéssemos matemática pedindo para provarmos teoremas e etc, mas eu preciso saber essas coisas...

Agradeço já à qualquer ajuda! Obrigado!
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Prova de função crescente.

Mensagempor LuizAquino » Qua Mai 18, 2011 12:34

Dizemos que a função f: I \to J é bijetora se as duas propriedades abaixo são válidas:
(i) Para quaisquer x_1 e x_2 pertencentes a I, se x_1\neq x_2, então temos que f(x_1)\neq f(x_2);
(ii) Para qualquer y pertencente a J, temos que existe algum x pertencente a I tal que y = f(x).

Se uma função tem apenas a propriedade (i), então ela é chamada de injetora.

Por outro lado, se uma função tem apenas a propriedade (ii), então ela é chamada de sobrejetora.

Para resolver o quesito (a) do exercício uma boa alternativa é usar o Axioma da Tricotomia (juntamente com o fato da função ser injetora): dados dois números reais a e b apenas uma das afirmações será verdadeira:
(i) a = b
(ii) a > b
(iii) a < b

Quanto a livros com técnicas de demonstração há vários. Um deles é:
Fossa, John. Introdução às Técnicas de Demonstração na Matemática. 2ª Edição. São Paulo: Editora Livraria da Física, 2009.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}