• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prova de função crescente.

Prova de função crescente.

Mensagempor TheoFerraz » Seg Mai 16, 2011 20:39

Na lista de exercicios o professor pegou esse exercicio de um livro ai:

Seja f: I \rightarrow J uma função bijetora. prove que ela é ou crescente, ou decrescente (monótona)

a) pelo método da análise real.

b) pelo método das derivadas.

Olha, talvez eu até consiga por derivadas, mas eu mal sei o que é bijetora! se alguém puder me ajudar seria ótimo!
Ah, e sobre essas demonstrações ai, principalmente as analíticas, existe algum livro, algum lugar que eu possa aprender essas coisas? como provar por absurdo, indução finita, essas coisas? Eu faço física mas o meu professor da a aula como se nós fizéssemos matemática pedindo para provarmos teoremas e etc, mas eu preciso saber essas coisas...

Agradeço já à qualquer ajuda! Obrigado!
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Prova de função crescente.

Mensagempor LuizAquino » Qua Mai 18, 2011 12:34

Dizemos que a função f: I \to J é bijetora se as duas propriedades abaixo são válidas:
(i) Para quaisquer x_1 e x_2 pertencentes a I, se x_1\neq x_2, então temos que f(x_1)\neq f(x_2);
(ii) Para qualquer y pertencente a J, temos que existe algum x pertencente a I tal que y = f(x).

Se uma função tem apenas a propriedade (i), então ela é chamada de injetora.

Por outro lado, se uma função tem apenas a propriedade (ii), então ela é chamada de sobrejetora.

Para resolver o quesito (a) do exercício uma boa alternativa é usar o Axioma da Tricotomia (juntamente com o fato da função ser injetora): dados dois números reais a e b apenas uma das afirmações será verdadeira:
(i) a = b
(ii) a > b
(iii) a < b

Quanto a livros com técnicas de demonstração há vários. Um deles é:
Fossa, John. Introdução às Técnicas de Demonstração na Matemática. 2ª Edição. São Paulo: Editora Livraria da Física, 2009.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.