Sua obra foi vasta e muitas delas foram perdidas:
- Resultado rápido, onde mostra métodos para efetuar cálculos rapidamente e também uma aproximação do número / pi mais precisa que a dada por Arquimedes;
- Dividir em uma razão(perdida), vários casos sobre o problema: dadas duas retas e um ponto em cada uma, traçar por um terceiro ponto dado uma reta que corte sobre as retas dadas segmentos que estejam numa razão dada;
- Cortar uma área;
- Sobre secção determinada, geometria analítica ;
- Tangências, onde consta o conhecida "problema de Apolônio";
- Inclinações, sobre problemas planos utilizando régua e compasso;
Lugares planos;
O problema de Apolônio:
O problema de Apolônio consta do tratado Tangências e trata do seguinte: Dadas três coisas, cada uma das quais podendo ser um ponto, uma reta ou um círculo, traçar um círculo que é tangente a cada uma das três coisas. Aqui podemos encontrar dez casos, desde o mais simples, o caso de três pontos, até o mais difícil que é traçar um círculo tangente a outros três círculos. Este último caso foi considerado um desafio para os matemáticos dos século XVI e XVII que pensavam que o autor não o teria resolvido e Newton foi um dos que o resolveram, utilizando-se apenas de régua e compasso.
Astronomia:
Na área de Astronomia Apolônio destacou-se como o autor de um modelo matemático muito aceito na antigüidade para a representação do movimento dos planetas. Eudoxo havia usado esferas concêntricas mas Apolônio propôs dois sistemas alternativos baseados em movimentos epicíclicos e movimentos excêntricos. No primerio caso assumia-se que um planeta se move uniformemente ao longo de um epiciclo cujo centro por sua vez se move uniformemente ao longo de um círculo maior com centro na terra, em . No esquema excêntrico o planeta se move ao longo de um círculo grande, cujo centro por sua vez se move em um círculo pequeno de centro em . Se , os dois esquemas serão equivalentes. Enquanto o sistema das esferas homocêntricas, graças a Aristóteles, era o favorito, os esquemas que utilizavam ciclos e epiciclos, graças a Ptolomeu eram adotados por astrônomos que buscavam um refinamento maior nos detalhes e nas previsões.ola Apolonio eu pesquiso sobre ti porque tou a faser um trabalho e gostava de saber como te tornaste num matematico.


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.