• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização

Otimização

Mensagempor AlbertoAM » Sáb Mai 14, 2011 21:36

O desenho seguinte representa uma plataforma petrolífera submarina P, situada a 4  \,\sqrt[]{2} km da linha da praia e uma estação de refino R distante 10 km da projeção ortogonal P' de P.Deseja-se conectar, através de tubulações, a plataforma P com a estação R.Sabendo que o custo da tubulação submersa é o triplo do custo da tubulação terrestre, determinar a posição do entroncamento E na linha da praia, demodo que o custo seja mínimo.R.:\overline{ER}=8km
Sem título.jpg


Pessoal to meio perdido nesse exercício aqui, não estou conseguindo montar a função a ser otimizada, poderiam me ajudar por favor.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Otimização

Mensagempor LuizAquino » Dom Mai 15, 2011 14:29

A figura abaixo ilustra com mais detalhe o exercício.
exercicio-otimizacao.png
exercicio-otimizacao.png (13.92 KiB) Exibido 2274 vezes


Agora, basta perceber que se o custo por km da tubulação terrestre for de 1 unidade monetária, então o custo por km da tubulação submersa será de 3 unidades monetárias.

Desse modo, o custo total será c = 1\cdot \overline{RE} + 3\cdot \overline{EP} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Otimização

Mensagempor AlbertoAM » Dom Mai 15, 2011 16:22

Com você explicando pareceu banal a resolução, mas quando eu estava tentando resolver sozinho nem imaginava que era isso.Eu só não entendi porque no enunciado ele disse que o custo da tubulação submersa é o triplo do custo da tubulação terrestre e no desenho a tubulação submersa que é \overline{EP}, que se localiza acima da linha da praia, e não abaixo dela, isso me confundiu.
Muito obrigado Luiz Aquino.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Otimização

Mensagempor LuizAquino » Dom Mai 15, 2011 18:42

Considere que a praia está sendo visualizada de cima, como ilustra a figura abaixo.
exercicio-otimizacao-praia.png
exercicio-otimizacao-praia.png (61.77 KiB) Exibido 2263 vezes
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Otimização

Mensagempor AlbertoAM » Dom Mai 15, 2011 19:23

Compreendi agora.Como sempre muito atencioso.
Obrigado.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59