• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvidas função elementar

Dúvidas função elementar

Mensagempor Lorraine » Sex Mai 13, 2011 02:34

Olá..
Pessoal estou com muitas dificuldades de fazer esse exercício!
Me ajudem,por favor!
Aguardo..
Grata



1) Considere, g(x)=\left| x+4\right| e f(x)=2-3\left| x+4\right|

a)Esboce os gráficos de g(x)
b)Esboce os gráficos de f(x)
c)Encontre o intervalo onde g(x)\geq0 e onde f(x)\geq0
Lorraine
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Out 28, 2010 23:05
Formação Escolar: GRADUAÇÃO
Área/Curso: graduação em quimica
Andamento: cursando

Re: Dúvidas função elementar

Mensagempor DanielRJ » Sex Mai 13, 2011 07:33

Desenhe o plan cartesiano
e comece a jogar valores pra x exemplo:


g(x)=|x+4|
g(1)=|1+4|
g(1)=|5|
g(1)=5

então temos o par ordenado ------> (1 ; 5 )
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Dúvidas função elementar

Mensagempor carlosalesouza » Sex Mai 13, 2011 09:34

Lorraine...

Note que a função modular tem uma característica específica... o módulo jamais é menor que zero... (isso não quer dizer que a função não tenha imagem negativa)

Assim, pra facilitar nossa vida, podemos reescrever a função, retirando-a do módulo... e teremos duas funções distintas condicionadas ao valor de x, para garantir que o resultado do módulo seja positivo...

Essas duas funções nos darão linhas diferentes, que teremos que combinar em suas áreas válidadas (onde o módulo é \geq 0 e teremos o gráfico da função...

Para encontrar o vértice e a imagem positiva, não é necessário fazer o gráfico, mas, como o exercício pede, vc terá que fazer... rs

vamos, então, extrair as funções condicionadas:
g(x)=|x+4|...

Sabemos que se g(x)<0, então |g(x)| = -g(x)... certo?

Então,
\\
g(x) = x+4\ se\ x\geq -4\\
g(x) = -x-4\ se\ x<-4

O vértice é o ponto onde o módulo é zero...
|x+4|=0
x=-4...

Nesse caso, Im\{g(x)\}=\mathbb{R}...

Escolha um valor de x<-4 e outro x>-4 e vc poderá traçar as duas retas

Para a outra, realize os mesmos passos... contudo, note 2-3|x+4| te dará valores negativos sempre que 3|x+4|>2

Faz o gráfico... se ficar com dúvida, posta...

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Dúvidas função elementar

Mensagempor Lorraine » Sex Mai 13, 2011 09:55

Mto Obrigada..
Já consegui fazer!
Lorraine
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Out 28, 2010 23:05
Formação Escolar: GRADUAÇÃO
Área/Curso: graduação em quimica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.