por maria cleide » Qui Mai 12, 2011 17:43
Seja

a medida do lado do ctógono regular da figura. Então, a área da região sombreada é quanto?
Sei que a área do octógono é :

, supus que a parte sombreada é a metade da figira então é:

. Mas é apenas uma suposição, então como fazer?
- Anexos
-

-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por MarceloFantini » Qui Mai 12, 2011 18:31
Primeiro, tome cuidado com as suas suposições. Você não pode afirmar que a área sombreada é metade da área da figura. A figura sombreada é um retângulo, logo sua área é base vezes altura. Sabemos que a base é igual ao lado do octógono, falta encontrar a altura. Sabemos, também, que se somarmos a área sombreada com as duas áreas brancas teremos a área total. Tente trabalhar com isso. Tenha em mente que o que você precisa encontrar é a altura do retângulo sombreado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por maria cleide » Qui Mai 12, 2011 22:38
Essa parte consegui entender olhando para a figura, mas como faço para achar a altura do retângulo sabendo que conto apenas com a medida da base e e que posso formar 8 triângulos isósceles partindo do centro da figura. E que o ângulo interno de cada triângulo será

?
-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por maria cleide » Qui Mai 12, 2011 22:42
Essa parte consegui entender olhando para a figura. Mas como posso calcular o valor da altura do retângulo (parte sombreada) sendo que só conto com o valor da base e que partindo do centro do octógono posso formar 8 triângulos isósceles com

cada, de ângulo interno e que a base é

-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por FilipeCaceres » Qui Mai 12, 2011 22:51
Observe que a altura o retângulo é igual ao valor da base maior dos trapézios, desta forma basta fazer:

Onde

E sabendo que:

Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por maria cleide » Sex Mai 13, 2011 22:37
Encontrei a área do octógono que é:

. Mas falta encontrar a área sombreada que depende da Base maior do trapézio ou o lado do retângulo. E agora, como faço?
Abraço, Maria Cleide.
-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por FilipeCaceres » Sáb Mai 14, 2011 00:14
Como você já encontrou a área do octógono so falta calcular o valor de B, agora faça:



Então temos,

Agora tente encontrar o valor de B, depois faça:

Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Willian Sujuki » Sáb Mai 14, 2011 12:18
Em figuras regulares, é sempre importante tentar inscrever a figura numa circunferencia, ja que todos os poligonos regulares sao inscritiveis.
Em segundo lugar, eh sempre bom anotar os angulos internos e externos da figura, que nesse caso valem,

, respectivamente.
Bom, dessa forma, temos que os angulos da base menor dos trapezios, que sao isósceles, medem

e portanto, os angulos da base maior dos trapezios medem

, ja que devem ser suplementares.
Se traçarmos novas perpendiculares ao retangulo sombreado, formando outro retangulo congruente, dividiremos os trapezios em um retangulo central e dois triangulos congruentes. Esses dois triangulos congruentes formados no trapezio, sao isósceles, de angulos iguais a 45, 45 e 90. Assim, por sen e/ou cos

- hipotenusa eh o proprio lado do octógono- , temos que o triangulo tem lados iguais a

/2 ,

/2 e a

, este ultimo sendo o proprio lado do octogono.
Ja o retangulo tem um lado medindo

/2 e o outro medindo

, paralelo ao proprio lado do octogono.
Dai, com as medidas, fica facil achar qualquer area da figura.
Pelas minhas contas, deu

+ 1.
Espero ter ajudado, é que sou novo aqui, esse é meu primeiro post, entao estou meio confuso quanto ao uso do latex e tal. Pode ter ficado confusa a resolução, mas a parte mais importante eh determinar os angulos do octogono REGULAR. Essa palavra eh muito importante, nao despreze-a! Qualquer duvida sobre a resoluçao, tamo ae.Abraços.
-
Willian Sujuki
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Mai 14, 2011 11:42
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por maria cleide » Sex Mai 20, 2011 12:08
Eu fiz:
![\sqrt{3}\cdot\dfrac{3}{2}+2[\dfrac{(B+\sqrt{3})}{2}\cdot\dfrac{\sqrt{3}\cdot\sqrt{3}}{2}]=6(\sqrt{2}+1) \sqrt{3}\cdot\dfrac{3}{2}+2[\dfrac{(B+\sqrt{3})}{2}\cdot\dfrac{\sqrt{3}\cdot\sqrt{3}}{2}]=6(\sqrt{2}+1)](/latexrender/pictures/879fdffc19b29035f5b9b1a8dec690d2.png)
e encontrei

. Multiplicando isso bela base menor ja que a altura do retângulo é essa obti:

. Que não é o resultado. Eu não fiz certo? Posso ter errado nas contas?
-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por maria cleide » Dom Mai 22, 2011 20:34
Tem alguma conclusão?
-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por claudinho » Ter Jun 14, 2011 03:55
bem
ta corretissimo,, testei aqui e bateu o resultado
A grande dica mesmo, era encontrar este angulo de 45°
(tanto internamente, do jeito q o wiliam frisou,
ou externamnete, imaginando um quadrado cinscunscrevendo o octógono)
Oq vc fez por pitagoras, eu tentei por seno
E a continuação fica mais facil:
Abraço a todos
-
claudinho
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jun 10, 2011 13:55
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por claudinho » Ter Jun 14, 2011 03:56
bem
ta corretissimo,, testei aqui e bateu o resultado
A grande dica mesmo, era encontrar este angulo de 45°
(tanto internamente, do jeito q o wiliam frisou,
ou externamnete, imaginando um quadrado cinscunscrevendo o octógono)
Oq vc fez por pitagoras, eu tentei por seno
E a continuação fica mais facil:
Abraço a todos
-
claudinho
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jun 10, 2011 13:55
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área dentro de um octógono
por anfran1 » Dom Ago 19, 2012 12:06
- 3 Respostas
- 2440 Exibições
- Última mensagem por anfran1

Dom Nov 17, 2013 10:34
Geometria Plana
-
- [ área do octógono] ajudem por favor...
por jeanderson09 » Qui Out 11, 2012 21:23
- 2 Respostas
- 1724 Exibições
- Última mensagem por jeanderson09

Qui Out 11, 2012 22:10
Geometria Plana
-
- Exercicio Octogono
por atpe » Qui Set 16, 2010 20:13
- 1 Respostas
- 3078 Exibições
- Última mensagem por MarceloFantini

Sex Set 17, 2010 00:21
Geometria Plana
-
- [Razão da área do triângulo para a área do quadrilátero]
por Mayra Luna » Sex Nov 23, 2012 20:17
- 2 Respostas
- 4266 Exibições
- Última mensagem por Mayra Luna

Ter Nov 27, 2012 14:53
Geometria Plana
-
- Área - Na próxima figura ABCD é um quadrilátero de área 200
por marguiene » Sex Out 10, 2014 10:22
- 0 Respostas
- 2052 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:22
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.