por jamiel » Ter Mai 10, 2011 14:03
Resolva as equações exponenciais.

Acredito estar certa, mas se alguém puder fazer alguma análise!
=============================
![\sqrt[5]{{3}^{2x}}={2.187}^{\frac{{35x}^{2}-1}{35}}
{3}^{\frac{2x}{5}}=7*\frac{{35x}^{2}-1}{35} \sqrt[5]{{3}^{2x}}={2.187}^{\frac{{35x}^{2}-1}{35}}
{3}^{\frac{2x}{5}}=7*\frac{{35x}^{2}-1}{35}](/latexrender/pictures/faf317b98ffaeb2e05d768891fa32b24.png)
Sinceramente, nesta segunda equação, não consigo passar daí!
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por carlosalesouza » Ter Mai 10, 2011 16:10
Na verdade, meu caro, tem um probleminha

Note que

... o 1 é positivo, pois:

seria o mesmo que:

Ok?
Com a outra, vamos primeiro fatorar o 2.187, que fica igual a

Agora:
![\\
\sqrt[5]{{3}^{2x}}={2.187}^{\frac{{35x}^{2}-1}{35}}\\
3^{\frac{2x}{5}}=3^7^{\frac{35x^2-1}{35}}\\
\frac{2x}{5}=7\cdot \frac{35x^2-1}{35}\\
\frac{2x}{5}=\frac{35x^2-1}{5} \\
\sqrt[5]{{3}^{2x}}={2.187}^{\frac{{35x}^{2}-1}{35}}\\
3^{\frac{2x}{5}}=3^7^{\frac{35x^2-1}{35}}\\
\frac{2x}{5}=7\cdot \frac{35x^2-1}{35}\\
\frac{2x}{5}=\frac{35x^2-1}{5}](/latexrender/pictures/4b702bafd63c83d08ec55896ef4be200.png)
Como ambos os lados apresentam o mesmo divisor:

Aqui caímos temos uma equação de segundo grau:

Assim:

Ok?
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por jamiel » Qua Mai 11, 2011 00:30
rsrsrsr O pior é q quando postei isso, logo em seguida consegui resolver, mas tive q sair e não postei a minha solução.
3^(2x/5)=(3^7)^(35x^(2)-1/35)
2x/5 = 7*35x^2-1/35
2x/5=1/5*35x^(2)-1
2x/5=35x^2/5 - 1/5
2x/5=7x^2 -1/5
-7x^2 + 2x/5 + 1/5
?144/25 = 12/5
' -1/7 e ''1/5
Mas valeu de qualquer forma, Carlos.
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Exponencial - Problema 2
por jamiel » Seg Mai 09, 2011 18:58
- 7 Respostas
- 2844 Exibições
- Última mensagem por jamiel

Seg Mai 09, 2011 22:53
Sistemas de Equações
-
- Equação Exponencial - Problema 4
por jamiel » Sex Mai 13, 2011 03:00
- 7 Respostas
- 3919 Exibições
- Última mensagem por jamiel

Sex Mai 13, 2011 15:24
Sistemas de Equações
-
- Equação Exponencial - Problema 5
por jamiel » Sex Mai 13, 2011 15:42
- 7 Respostas
- 3622 Exibições
- Última mensagem por jamiel

Sex Mai 13, 2011 20:27
Sistemas de Equações
-
- Problema Com Inequação do Exponencial
por chenz » Sáb Jun 19, 2010 17:13
- 2 Respostas
- 1692 Exibições
- Última mensagem por chenz

Dom Jun 20, 2010 12:35
Funções
-
- Função Exponencial - problema 1
por jamiel » Sáb Mai 14, 2011 15:40
- 6 Respostas
- 2581 Exibições
- Última mensagem por jamiel

Dom Mai 15, 2011 10:40
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.