• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo do sinal

Estudo do sinal

Mensagempor victorleme » Dom Mai 08, 2011 16:33

1)Se k é um número real maior que zero, então :\frac{1}{\sqrt[2]{k^2+1}-k}
Alternativas:
A)Diminui quando k aumenta
B) é menor que 0
C) está entre 0 e k
D) Está entre k e 2k
E) é maior que 2k


Alguma luz?
victorleme
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 23, 2011 19:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecatrônica
Andamento: cursando

Re: Estudo do sinal

Mensagempor Molina » Dom Mai 08, 2011 17:08

Boa tarde, Victor.

Perceba que \sqrt{k^2 + 1} é quase igual a k, porém é maior (por um pequeno valor). Porém, quando k aumenta, o valor do denominador (parte inferior da fração) diminui. Exemplo:

k=2 \Rightarrow \sqrt{4+1}-2= 0,2360...

k=10 \Rightarrow \sqrt{100+1}-10= 0,0498...

Ou seja, a expressão completa aumenta quando k aumenta. (alternativa A está descartada).

O denominador da fração é sempre um valor positivo pelo critério imposto no enunciado, logo a expressão total será sempre positiva. (alternativa B está descartada).

Para verificar as alternativas [u]C[/u], D e E podemos pegar um k particular e ver o que vamos obter como resposta:

k=10 \Rightarrow \frac{1}{\sqrt{100+1}-10}= 20,0498...

Concluimos que a alternativa E está correta.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.