• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcule a função que contem logaritmo

Calcule a função que contem logaritmo

Mensagempor andersontricordiano » Qui Mai 05, 2011 20:19

CALCULE O CALCULO DA FUNÇÃO QUE CONTEM LOGARITMO :

{f}(x)={log}_{3}(x-2)

DADOS OS VALORES PARA x :
a)Se x=-2
b)Se x=-1
c)Se x=1
d)Se x=0

Detalhe as resposta são:

a)=\frac{19}{9}

b)=\frac{7}{3}

c)=5

d)=3


Agradeço muito quem resolver esse calculo
Editado pela última vez por andersontricordiano em Sex Mai 06, 2011 02:50, em um total de 2 vezes.
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule a função que contem logaritmo

Mensagempor MarceloFantini » Sex Mai 06, 2011 00:11

Tem certeza que não se confundiu? A função não existe para estes valores.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calcule a função que contem logaritmo

Mensagempor andersontricordiano » Sex Mai 06, 2011 02:33

ok!
A resposta da letra d eu tinha colocado outro valor errado.Que tem como resultado 3.
Mas as outras alternativa estão como está no gabarito do livro
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Calcule a função que contem logaritmo

Mensagempor Molina » Sex Mai 06, 2011 13:00

Bom dia, Anderson.

O que o Fantini quis dizer é que o logaritmando precisa ser maior do que zero, para a função existir.

Por exemplo, não tem sentido perguntar qual o log_3(-2), pois 3 elevado a nenhum número vai ter como resultado -2.

No seu outro tópico (que eu exclui, por sinal) você havia colocado f^{-1}(x)... Coloque a questão como está no livro ou então tire uma foto dela e coloque aqui.


Ficamos no aguardo!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calcule a função que contem logaritmo

Mensagempor andersontricordiano » Sex Mai 06, 2011 16:38

Ok está escrita no livro.

Seja f: R\rightarrow[+2,+\infty[ definida por f(x)={3}^{x}+2 e {f}^{-1}(x)={log}_{3}(x-2)

Represente f e {f}^{-1} no mesmo plano.

DADOS OS VALORES PARA x :
a)Se x=-2
b)Se x=-1
c)Se x=1
d)Se x=0

é assim que está eu também estou achando estranho a resposta! pois [+2,+\infty[
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}