• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade

Probabilidade

Mensagempor Michelee » Ter Abr 26, 2011 19:34

Boa noite
Eu tenho uma dúvida na questão que postei abaixo.

Sendo P(A)=0,30, P(B)= 0,50 e P(A intersecção B)= 0,10. Calcule as seguintes probabilidades:

Questão 1: P(A' U B'). A resposta é 0,9
Questão 2: P(A' intersecção B')

Eu tentei fazer subtraindo o P(A) com 1 e e somando com P(B)..tentei de tudo mas não bate com esse resultado.

Por favor, alguem pode me ajudar????
Michelee
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Abr 26, 2011 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Probabilidade

Mensagempor Hideraldo » Qui Abr 28, 2011 12:37

(1) P(A' U B') = P(A interseção B)' = 1 - P(A interseção B) = 1 - 0,10 = 0,90

(2) P(A' interseção B') = P(A U B)' = 1 - P(A U B),

achando: P(A U B) = P(A) + P(B) - P(A interseção B) = 0,30 + 0,50 - 0,10 = 0,70

então: P(A' interseção B') = 1 - 0,70 = 0,30

Espero ter ajudado.
Hideraldo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 28, 2011 12:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatítica
Andamento: cursando

Re: Probabilidade

Mensagempor Michelee » Qui Abr 28, 2011 13:13

Sim Hideraldo.
Você respondeu corretamente, as respostas são essas mesma =)
Mas, mesmo vendo a resolução é confuso, pois veja:
na (1) não devia ser união, já que tá pedindo P(A' U B') = 1-[P(A) + P(B) - P(AUB)] =0,3O

na (2) se é intersecção P(A' INTERSECÇÃO B') = 1-[P(A ...B)] = 0,90

O que eu acho estranho é que eu vejo o complementar da união mas tenho que resolver somento como intersecção. Isso q me confunde=/

Obrigada pela ajuda;)
Michelee
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Abr 26, 2011 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}