por Michelee » Ter Abr 26, 2011 19:34
Boa noite
Eu tenho uma dúvida na questão que postei abaixo.
Sendo P(A)=0,30, P(B)= 0,50 e P(A intersecção B)= 0,10. Calcule as seguintes probabilidades:
Questão 1: P(A' U B'). A resposta é 0,9
Questão 2: P(A' intersecção B')
Eu tentei fazer subtraindo o P(A) com 1 e e somando com P(B)..tentei de tudo mas não bate com esse resultado.
Por favor, alguem pode me ajudar????
-
Michelee
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Abr 26, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Hideraldo » Qui Abr 28, 2011 12:37
(1) P(A' U B') = P(A interseção B)' = 1 - P(A interseção B) = 1 - 0,10 = 0,90
(2) P(A' interseção B') = P(A U B)' = 1 - P(A U B),
achando: P(A U B) = P(A) + P(B) - P(A interseção B) = 0,30 + 0,50 - 0,10 = 0,70
então: P(A' interseção B') = 1 - 0,70 = 0,30
Espero ter ajudado.
-
Hideraldo
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Abr 28, 2011 12:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatítica
- Andamento: cursando
por Michelee » Qui Abr 28, 2011 13:13
Sim Hideraldo.
Você respondeu corretamente, as respostas são essas mesma =)
Mas, mesmo vendo a resolução é confuso, pois veja:
na (1) não devia ser união, já que tá pedindo P(A' U B') = 1-[P(A) + P(B) - P(AUB)] =0,3O
na (2) se é intersecção P(A' INTERSECÇÃO B') = 1-[P(A ...B)] = 0,90
O que eu acho estranho é que eu vejo o complementar da união mas tenho que resolver somento como intersecção. Isso q me confunde=/
Obrigada pela ajuda;)
-
Michelee
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Abr 26, 2011 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10066 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- Probabilidade - Função Densidade de Probabilidade
por pimgui » Qua Dez 16, 2020 10:53
- 0 Respostas
- 18572 Exibições
- Última mensagem por pimgui

Qua Dez 16, 2020 10:53
Probabilidade
-
- Probabilidade - função probabilidade
por tarlix » Ter Mai 24, 2011 12:41
- 1 Respostas
- 5048 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:00
Estatística
-
- [Probabilidade] probabilidade de obj com estudantes
por fenixxx » Seg Ago 13, 2012 14:06
- 1 Respostas
- 4304 Exibições
- Última mensagem por Neperiano

Ter Out 09, 2012 10:10
Probabilidade
-
- [probabilidade condicional] probabilidade de gol.
por Mr_ MasterMind » Sáb Set 19, 2015 17:35
- 0 Respostas
- 4348 Exibições
- Última mensagem por Mr_ MasterMind

Sáb Set 19, 2015 17:35
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 12:41
pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.
78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?
Assunto:
dúvida em uma questão em regra de 3!
Autor:
Douglasm - Qui Jul 01, 2010 13:16
Observe o raciocínio:
10 pessoas - 9 dias - 135 toneladas
1 pessoa - 9 dias - 13,5 toneladas
1 pessoa - 1 dia - 1,5 toneladas
40 pessoas - 1 dia - 60 toneladas
40 pessoas - 30 dias - 1800 toneladas
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:18
pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
Assunto:
dúvida em uma questão em regra de 3!
Autor:
leandro moraes - Qui Jul 01, 2010 13:21
leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.
valeu meu camarada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.