por daniel2678 » Qua Abr 27, 2011 02:14
Gente, estou com problemas para resolver estes exercícios e eles valem nota pra amanhã. Já postei em outros lugares e ninguém conseguiu me fazer entender.
Encontre a carga estacionária e a corrente estacionária em um circuito em
série RCL quando L = 1h, R = 2?, C = 0,25f e E(t) = 50cos(t)V.
e
Ache a carga no capacitor em um circuito em série LRC em t = 0,01s quando
L = 0,05h, R = 2?, C = 0,01f, E(t) = 0V, qo = 5C e i(0) = 0A. Determine a
primeira vez em que a carga sobre o capacitor é igual a zero.
Utilizei a fórmula LQ''+RQ'+Q/C=E(t) no primeiro exercício para chegar em Q"+2Q'+4Q=50cos(t), mas não sei resolver.
O segundo exercício eu só sei a resposta final. Eu estou tentando desde o sábado e nada... É questão de vida ou morte agora... Obrigado!
-
daniel2678
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Abr 27, 2011 01:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Qua Abr 27, 2011 10:59
Para resolver a equação diferencial Q"+2Q'+4Q=50cos(t), você precisa usar a estratégia de que a função Q(t) tem o formato:

.
O seu objetivo será determinar as constantes A e B. Para isso, comece substituindo a função na equação diferencial:

Resolvendo as derivadas e arrumando a equação, você obtém:

Agora, basta você resolver o sistema:
ObservaçãoPara armar o sistema basta notar que temos a equação:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por 0146251 » Seg Mai 25, 2015 21:42
Ache a carga no capacitor em um circuito em série LRC em t = 0,01s quando
L = 0,05h, R = 2?, C = 0,01f, E(t) = 0V, qo = 5C e i(0) = 0A. Determine a
primeira vez em que a carga sobre o capacitor é igual a zero.
Conforme a equação acima e faço pela equações lineares com coeficientes contantes.
Então tenho a equação:
0,05d²/dt² + 2 dq/dt + 1/0,01q = 0
então obtenho o resultado e para descobrir c1 e c2 faço q(0)=5 e q'(0)=0
Obtendo então c1 e c2, altero apenas o t pelo 0,01s.
Está correto esse raciocínio ?
-
0146251
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Mai 25, 2015 21:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações Diferenciais] De segunda ordem
por palliativos » Dom Nov 16, 2014 20:35
- 1 Respostas
- 1312 Exibições
- Última mensagem por adauto martins

Qua Nov 19, 2014 12:06
Cálculo: Limites, Derivadas e Integrais
-
- Equações Diferenciais-Redução de Ordem uma ajudinha=)
por Garota nerd » Dom Nov 25, 2012 23:59
- 2 Respostas
- 1817 Exibições
- Última mensagem por Garota nerd

Seg Nov 26, 2012 23:32
Cálculo: Limites, Derivadas e Integrais
-
- Equações diferenciais: ordem, tipo e grau
por luanavsr » Qui Set 05, 2013 14:56
- 0 Respostas
- 1245 Exibições
- Última mensagem por luanavsr

Qui Set 05, 2013 14:56
Cálculo: Limites, Derivadas e Integrais
-
- [EDO de 1º ordem] duvida
por CarolMarques » Ter Abr 23, 2013 10:53
- 1 Respostas
- 2919 Exibições
- Última mensagem por young_jedi

Qui Abr 25, 2013 22:38
Cálculo: Limites, Derivadas e Integrais
-
- duvida para derivar a segunda ordem
por PORTER » Ter Nov 04, 2014 21:37
- 3 Respostas
- 3076 Exibições
- Última mensagem por Russman

Qua Nov 05, 2014 11:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.