por jamiel » Sex Abr 15, 2011 13:59
Se alguém puder dar uma ajudinha eu agradeço!
x-2 / x+3 ? x / x+2
1º passo
(x+2)(x-2) -(x+3)x / (x+3)(x+2) ? 0
2º passo
(x²+2x-2x-4) -(x²-3x) ? 0
Minha dúvida é justamente nesse segundo passo, pois eu consigo "3x-4". No gabarito, "3x+4", não entendo onde posso ter errado. No caso 3x-4, x seria = 4/3, mas no do gabarito x = -4/3. Alguém pode me ajudar?
A formatação de formulas tá dando bronca pra mim, tive q fazer assim mesmo!
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por MarceloFantini » Sex Abr 15, 2011 16:30
Partindo do primeiro passo:


Detalhando:

, sobra

no numerador. Coloquei

em evidência, e depois multipliquei tudo e inverti a desigualdade.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jamiel » Sex Abr 15, 2011 16:39
Fantini ---- thank you a lot!
Ok! Então, quer dizer que se -3x -4 ? 0 q é o numerador ---> 3x + 4 ? 0 ... inverte-se o donominador também, melhor dizendo, os denominadores agregados? Pq disso?
Mais uma vez, thank for your help!
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por MarceloFantini » Sex Abr 15, 2011 17:08
Não inverti o denominador, note que ele ficou inalterado.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jamiel » Sex Abr 15, 2011 22:38
Thank you one more!
Deixa-me ver se entendi:
O denominador permance inalterado devido às operações já feitas anteriormente com o numerador?
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por MarceloFantini » Sex Abr 15, 2011 22:41
Neste caso, sim.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jamiel » Sáb Abr 23, 2011 00:18
Sabe-se que a parábola que representa a função y = -x²+bx+c passa pelo ponto (3;5) e que seu vértice é (m;5/4). Calcule b,c e m.
-b/2•(-1) = m (1)
-?/4•(-1) = 5/4 ---- 5/4•-4 = -20/4 = -5² = ?25 = 5 --->
-[b² -4•(-1)•c] / 4•(-1) = 5/4
b² -4c("?25 =5") = 5 (2)
-(3)² + 3b + c = -5
-9 + 3b + c = -5
3b + c = 4 (3)
Sistema ---->
b² + 4c = 5
3b + c = 4
Aqui é q eu não consegui ir adiante. Se eu considerar o "c=4", obtenho o valor de b²=-11 ---- -11/-2 = "m = 11/2". Porém, não senti precisão, mais, teria q obter mais um "c=-29", o q seria meio contraditório. A coordenadas são (11;-29) e (1;1), no gabarito!
Alguém pode me ajudar nessa? Agrandeço desde já!
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por MarceloFantini » Sáb Abr 23, 2011 13:16
Jamiel, por favor crie um novo tópico para sua dúvida, isso contribui para a organização do fórum.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jamiel » Sáb Abr 23, 2011 13:26
Vlw pelo toque ... irei criar outro!
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida na resolução
por Du21 » Sex Mar 04, 2011 20:48
- 2 Respostas
- 1639 Exibições
- Última mensagem por Du21

Sáb Mar 05, 2011 00:07
Sistemas de Equações
-
- Dúvida - resolução
por marinalcd » Ter Out 15, 2013 20:00
- 0 Respostas
- 892 Exibições
- Última mensagem por marinalcd

Ter Out 15, 2013 20:00
Cálculo: Limites, Derivadas e Integrais
-
- Dúvida na Resolução de uma Função
por brunnomaia » Dom Mar 06, 2011 11:07
- 2 Respostas
- 1698 Exibições
- Última mensagem por brunnomaia

Dom Mar 06, 2011 11:53
Funções
-
- Dúvida - resolução função !
por jamiel » Qui Mai 26, 2011 18:07
- 11 Respostas
- 5622 Exibições
- Última mensagem por jamiel

Qui Mai 26, 2011 22:31
Funções
-
- Função Sen - Dúvida Resolução
por jamiel » Sáb Jul 02, 2011 17:47
- 7 Respostas
- 4238 Exibições
- Última mensagem por jamiel

Sáb Jul 02, 2011 19:42
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.