por Carolziiinhaaah » Qui Abr 21, 2011 16:19
Se a equação do 2o grau ax^2 + bx + c = 0, a ? 0, admite as raízes reais não nulas x1 e x2, obter a equação de
raízes:

Uploaded with
ImageShack.us
-

Carolziiinhaaah
- Usuário Parceiro

-
- Mensagens: 77
- Registrado em: Sex Mai 28, 2010 14:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Qui Abr 21, 2011 16:30
Lembre-se da fatoração de polinômios:

. Troque as raízes pelas que você tem e reescreva em termos dos coeficientes originais.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por SidneySantos » Qui Abr 21, 2011 17:01
Editado pela última vez por
SidneySantos em Sex Abr 22, 2011 09:26, em um total de 2 vezes.
Um forte abraço e bom estudo!!!
-
SidneySantos
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Qua Abr 20, 2011 07:47
- Localização: Belém - Pará
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Educaçao Matemática
- Andamento: cursando
por SidneySantos » Qui Abr 21, 2011 17:45
Editado pela última vez por
SidneySantos em Sex Abr 22, 2011 09:28, em um total de 2 vezes.
Um forte abraço e bom estudo!!!
-
SidneySantos
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Qua Abr 20, 2011 07:47
- Localização: Belém - Pará
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Educaçao Matemática
- Andamento: cursando
por SidneySantos » Qui Abr 21, 2011 17:56
Um forte abraço e bom estudo!!!
-
SidneySantos
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Qua Abr 20, 2011 07:47
- Localização: Belém - Pará
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Educaçao Matemática
- Andamento: cursando
por SidneySantos » Sex Abr 22, 2011 09:49
Um forte abraço e bom estudo!!!
-
SidneySantos
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Qua Abr 20, 2011 07:47
- Localização: Belém - Pará
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Educaçao Matemática
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Soma e produto das raizes das equações.
por Thays » Ter Jan 22, 2013 12:41
- 3 Respostas
- 4016 Exibições
- Última mensagem por Thays

Qua Jan 23, 2013 10:11
Equações
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7985 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
-
- [Radiciação] Raízes dentro de raízes
por mottasky » Ter Set 13, 2011 22:00
- 2 Respostas
- 2433 Exibições
- Última mensagem por mottasky

Qui Set 15, 2011 15:52
Álgebra Elementar
-
- Calculando a função através das coordenadas
por Fernanda Lauton » Dom Jun 13, 2010 20:36
- 2 Respostas
- 1544 Exibições
- Última mensagem por Fernanda Lauton

Seg Jun 14, 2010 16:06
Funções
-
- DETERMINAR FUNÇÃO ATRAVÉS DE COORDENADAS
por Fernanda Lauton » Qua Abr 06, 2011 14:41
- 1 Respostas
- 1647 Exibições
- Última mensagem por MarceloFantini

Qua Abr 06, 2011 19:24
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.