• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações através das raízes

Equações através das raízes

Mensagempor Carolziiinhaaah » Qui Abr 21, 2011 16:19

Se a equação do 2o grau ax^2 + bx + c = 0, a ? 0, admite as raízes reais não nulas x1 e x2, obter a equação de
raízes:

Imagem

Uploaded with ImageShack.us
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equações através das raízes

Mensagempor MarceloFantini » Qui Abr 21, 2011 16:30

Lembre-se da fatoração de polinômios: ax^2 +bx +c = a(x - x_1)(x-x_2). Troque as raízes pelas que você tem e reescreva em termos dos coeficientes originais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Item a)

Mensagempor SidneySantos » Qui Abr 21, 2011 17:01

ax^2 + bx + c = 0

x^2 - Sx + P = 0

S = {x}_{1}+{x}_{2}=-\frac{b}{a}

P = {x}_{1}.{x}_{2}=\frac{c}{a}

{\left({x}_{1}+{x}_{2} \right)}^{2}={\left(-\frac{b}{a} \right)}^{2}

{{x}_{1}}^{2}+2{x}_{1}{x}_{2}+{{x}_{2}}^{2}=\frac{{b}^{2}}{{a}^{2}}

{{x}_{1}}^{2}+{{x}_{2}}^{2}=\frac{{b}^{2}}{{a}^{2}}-2{x}_{1}{x}_{2}

{{x}_{1}}^{2}+{{x}_{2}}^{2}=\frac{{b}^{2}}{{a}^{2}}-2\frac{c}{a}

{{x}_{1}}^{2}+{{x}_{2}}^{2}=\frac{{b}^{2}-2ac}{{a}^{2}}

{{x}_{1}}^{2}.{{x}_{2}}^{2}=\frac{{c}^{2}}{{a}^{2}}

x^2 - Sx + P = 0

{x}^{2}-\left(\frac{{b}^{2}-2ac}{{a}^{2}} \right)x+\frac{{c}^{2}}{{a}^{2}}=0

{a}^{2}{x}^{2}-\left({b}^{2}-2ac \right)x+{c}^{2}=0
Editado pela última vez por SidneySantos em Sex Abr 22, 2011 09:26, em um total de 2 vezes.
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Item b)

Mensagempor SidneySantos » Qui Abr 21, 2011 17:45

ax^2 + bx + c = 0

x^2 - Sx + P = 0

S = {x}_{1}+{x}_{2}=-\frac{b}{a}

P = {x}_{1}.{x}_{2}=\frac{c}{a}

\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}=\frac{{x}_{1}+{x}_{2}}{{x}_{1}.{x}_{2}}

\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}=-\frac{b}{c}

\frac{1}{{x}_{1}}.\frac{1}{{x}_{2}}=\frac{a}{c}

\frac{1}{{x}_{1}}.\frac{1}{{x}_{2}}=\frac{a}{c}

x^2 - Sx + P = 0

{x}^{2}+\frac{b}{c}x+\frac{a}{c}=0

c{x}^{2}+bx+a=0
Editado pela última vez por SidneySantos em Sex Abr 22, 2011 09:28, em um total de 2 vezes.
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Item c)

Mensagempor SidneySantos » Qui Abr 21, 2011 17:56

ax^2 + bx + c = 0

x^2 - Sx + P = 0

S = {x}_{1}+{x}_{2}=-\frac{b}{a}

P = {x}_{1}.{x}_{2}=\frac{c}{a}

\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}=\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}.{x}_{2}}

\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}=\frac{{b}^{2}-2ac}{ac}

\frac{{x}_{1}}{{x}_{2}}.\frac{{x}_{2}}{{x}_{1}}=1

{x}^{2}-\left(\frac{{b}^{2}-2ac}{ac} \right)x+1=0

ac{x}^{2}-\left({b}^{2}-2ac}\right)x+ac=0
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Item d)

Mensagempor SidneySantos » Sex Abr 22, 2011 09:49

ax^2 + bx + c = 0

x^2 - Sx + P = 0

{\left({x}_{1}+{x}_{2} \right)}^{3}={\left(-\frac{b}{a} \right)}^{3}

{{x}_{1}}^{3}+3{{x}_{1}}^{2}{x}_{2}+3{x}_{1}{{x}_{2}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}

{{x}_{1}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}-3{x}_{1}{x}_{2}\left({x}_{1}+{x}_{2} \right)

{{x}_{1}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}-3\frac{c}{a}\left(-\frac{b}{a} \right)

{{x}_{1}}^{3}+{{x}_{2}}^{3}=-\frac{{b}^{3}}{{a}^{3}}+3\frac{bc}{{a}^{2}}

{{x}_{1}}^{3}+{{x}_{2}}^{3}=\frac{-{b}^{3}+3abc}{{a}^{3}}

{{x}_{1}}^{3}.{{x}_{2}}^{3}={\left(\frac{c}{a} \right)}^{3}

{{x}_{1}}^{3}.{{x}_{2}}^{3}=\frac{{c}^{3}}{{a}^{3}}

x^2 - Sx + P = 0

{x}^{2}-\left(\frac{-{b}^{3}+3abc}{{a}^{3}} \right)x+\frac{{c}^{3}}{{a}^{3}}=0

{a}^{3}{x}^{2}+\left({b}^{3}-3abc \right)x+{c}^{3}=0
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}