por mateusmarques » Qui Abr 07, 2011 16:13
1. Leis de De Morgan - Dados dois conjuntos A e B, mostre que:
(a) (AUB)^C = A^C?B^C
(b) (A?B)^C = A^C U B^C
2. Seja ?={1,0}3 . Este conjunto pode ser visto como o conjunto de resultados de três lançamentos de uma moeda (0 denota coroa e 1 denota cara). Defina os conjuntos
A={? s1, s2, s3???: s2=1} e B={? s1, s2, s3???: s1?s2?s3=2} . Liste os elementos de cada
um dos conjuntos a seguir: ? , A, B, A^C , B^C , A?B , A?B , A \ B e B \ A .
-
mateusmarques
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mar 25, 2011 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por FilipeCaceres » Qui Abr 07, 2011 20:10
Eu sei que figura não é o suficiente para uma demonstração, mas vou colocar para uma melhor visualização da demonstração.
a)

- Morgan.GIF (3.87 KiB) Exibido 4623 vezes
Entenda x' como complemento de x.
Para (b) é semelhante
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por benni » Dom Abr 10, 2011 11:36
Ex 1-lei de De morgan (anexo).
Ex.2 - A={(1,1,0);(0,1,0);(1,0,0)} s2=1
B = {(0,0,1);(0,1,0);(0,0,0)} s1+s2+s3= 2
agora é mostrar no diagrama de Venn, como já demonstrou o colega(não esta completo)
- Anexos
-
[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]
-
benni
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Mar 02, 2011 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Análise combinatória, Probabilidade e Noções de estatística
por mateusmarques » Qui Abr 07, 2011 16:14
- 2 Respostas
- 3103 Exibições
- Última mensagem por LuizAquino

Sex Abr 20, 2012 19:32
Estatística
-
- analise combinatoria probabilidade estatistica
por silvia fillet » Sex Mai 11, 2012 20:41
- 1 Respostas
- 4396 Exibições
- Última mensagem por leomjr

Qui Mai 17, 2012 17:22
Estatística
-
- Noções De Estatística
por Kamila » Dom Out 30, 2011 17:48
- 1 Respostas
- 2028 Exibições
- Última mensagem por Neperiano

Ter Nov 01, 2011 15:21
Estatística
-
- Estatística, Combinatória e Probabilidade
por Trakna » Ter Fev 23, 2010 09:41
- 0 Respostas
- 2004 Exibições
- Última mensagem por Trakna

Ter Fev 23, 2010 09:41
Estatística
-
- Estatística, Combinatória e Probabilidade
por cardosor23 » Qua Abr 18, 2012 18:53
- 1 Respostas
- 3331 Exibições
- Última mensagem por fraol

Qua Abr 18, 2012 23:16
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.