por mateusmarques » Qui Abr 07, 2011 16:13
1. Leis de De Morgan - Dados dois conjuntos A e B, mostre que:
(a) (AUB)^C = A^C?B^C
(b) (A?B)^C = A^C U B^C
2. Seja ?={1,0}3 . Este conjunto pode ser visto como o conjunto de resultados de três lançamentos de uma moeda (0 denota coroa e 1 denota cara). Defina os conjuntos
A={? s1, s2, s3???: s2=1} e B={? s1, s2, s3???: s1?s2?s3=2} . Liste os elementos de cada
um dos conjuntos a seguir: ? , A, B, A^C , B^C , A?B , A?B , A \ B e B \ A .
-
mateusmarques
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mar 25, 2011 18:25
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por FilipeCaceres » Qui Abr 07, 2011 20:10
Eu sei que figura não é o suficiente para uma demonstração, mas vou colocar para uma melhor visualização da demonstração.
a)

- Morgan.GIF (3.87 KiB) Exibido 4772 vezes
Entenda x' como complemento de x.
Para (b) é semelhante
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por benni » Dom Abr 10, 2011 11:36
Ex 1-lei de De morgan (anexo).
Ex.2 - A={(1,1,0);(0,1,0);(1,0,0)} s2=1
B = {(0,0,1);(0,1,0);(0,0,0)} s1+s2+s3= 2
agora é mostrar no diagrama de Venn, como já demonstrou o colega(não esta completo)
- Anexos
-
[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]
-
benni
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Qua Mar 02, 2011 15:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matematica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Análise combinatória, Probabilidade e Noções de estatística
por mateusmarques » Qui Abr 07, 2011 16:14
- 2 Respostas
- 3266 Exibições
- Última mensagem por LuizAquino

Sex Abr 20, 2012 19:32
Estatística
-
- analise combinatoria probabilidade estatistica
por silvia fillet » Sex Mai 11, 2012 20:41
- 1 Respostas
- 4505 Exibições
- Última mensagem por leomjr

Qui Mai 17, 2012 17:22
Estatística
-
- Noções De Estatística
por Kamila » Dom Out 30, 2011 17:48
- 1 Respostas
- 2164 Exibições
- Última mensagem por Neperiano

Ter Nov 01, 2011 15:21
Estatística
-
- Estatística, Combinatória e Probabilidade
por Trakna » Ter Fev 23, 2010 09:41
- 0 Respostas
- 2077 Exibições
- Última mensagem por Trakna

Ter Fev 23, 2010 09:41
Estatística
-
- Estatística, Combinatória e Probabilidade
por cardosor23 » Qua Abr 18, 2012 18:53
- 1 Respostas
- 3434 Exibições
- Última mensagem por fraol

Qua Abr 18, 2012 23:16
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.