• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise combinatória, Probabilidade e Noções de estatística

Análise combinatória, Probabilidade e Noções de estatística

Mensagempor mateusmarques » Qui Abr 07, 2011 16:13

1. Leis de De Morgan - Dados dois conjuntos A e B, mostre que:
(a) (AUB)^C = A^C?B^C
(b) (A?B)^C = A^C U B^C

2. Seja ?={1,0}3 . Este conjunto pode ser visto como o conjunto de resultados de três lançamentos de uma moeda (0 denota coroa e 1 denota cara). Defina os conjuntos
A={? s1, s2, s3???: s2=1} e B={? s1, s2, s3???: s1?s2?s3=2} . Liste os elementos de cada
um dos conjuntos a seguir: ? , A, B, A^C , B^C , A?B , A?B , A \ B e B \ A .
mateusmarques
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mar 25, 2011 18:25
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Análise combinatória, Probabilidade e Noções de estatíst

Mensagempor FilipeCaceres » Qui Abr 07, 2011 20:10

Eu sei que figura não é o suficiente para uma demonstração, mas vou colocar para uma melhor visualização da demonstração.
a)
Morgan.GIF
Morgan.GIF (3.87 KiB) Exibido 4654 vezes


Entenda x' como complemento de x.

Para (b) é semelhante
Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Análise combinatória, Probabilidade e Noções de estatíst

Mensagempor benni » Dom Abr 10, 2011 11:36

Ex 1-lei de De morgan (anexo).
Ex.2 - A={(1,1,0);(0,1,0);(1,0,0)} s2=1
B = {(0,0,1);(0,1,0);(0,0,0)} s1+s2+s3= 2
agora é mostrar no diagrama de Venn, como já demonstrou o colega(não esta completo)
Anexos

[O anexo não pode ser exibido, pois a extensão doc foi desativada pelo administrador.]

benni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Mar 02, 2011 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: