• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do Triângulo

Área do Triângulo

Mensagempor valeuleo » Ter Abr 05, 2011 11:25

Seja A = (2,1,1), B = (1,0,-2) e C = (4,1,3). Determine a área do triângulo ABC. Verifique se (9,-2,7) é ortogonal a AB e a AC.

Eu sei que o produto vetorial é igual a área do paralelograma que é 2 vezes a área do triângulo. Porém não sei se tenho que fazer alguma manipulação algébica. Ajuda para um iniciante.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Área do Triângulo

Mensagempor LuizAquino » Ter Abr 05, 2011 11:42

Sabemos que a área T do triângulo de vértices A, B e C é dada por:
T = \frac{1}{2}||\vec{AB}\times\vec{AC}||

Sendo assim, primeiro você precisa calcular \vec{AB} = B - A= (a,\, b,\, c) e \vec{AC} = C - A = (d,\, e,\, f) .

Em seguida, calcule o produto vetorial através da determinante da matriz abaixo:

\vec{AB}\times\vec{AC} = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\ a & b & c \\ d & e & f\end{vmatrix} = (bf-ce)\vec{i} + (cd-af)\vec{j} + (ae-bd)\vec{k} = (bf-ce,\, cd-af,\, ae-bd)

Por fim, calcule a área T:
T = \frac{1}{2}\sqrt{(bf-ce)^2 + (cd-af)^2 + (ae-bd)^2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.