por Caeros » Seg Abr 04, 2011 13:09
Olá caros(as) me ajudem a compreender esta questão:
Seja G =

o grupo linear, onde

= {
![A\:\in\:{M}_{3} ({Z}_{2} )\::\:det(A)\:\neq\:[0] A\:\in\:{M}_{3} ({Z}_{2} )\::\:det(A)\:\neq\:[0]](/latexrender/pictures/b8c7137a39fa94e1bfae8dd8ee8e8934.png)
}
e

o conjunto das matrizes sobre

de ordem 3: Mostre que IGI = 168:
Sei que é necessário saber o número de matrizes invertíveis, pelo menos acho que este é um caminho, mas não consegui. Ajuda.

-
Caeros
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Seg Mai 25, 2009 19:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Seg Abr 04, 2011 22:23
Caeros, você faz bacharelado em matemática?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Caeros » Ter Abr 05, 2011 09:31
Olá Fantini;
Eu estou estudando para Licenciatura em Matemática, porém a grade do meu curso é um pouco pesada e em nível de bacharel, por isso estou sempre recorrendo ao site. Grato. Caetano

-
Caeros
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Seg Mai 25, 2009 19:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LuizAquino » Ter Abr 05, 2011 10:41
Olá Caeros,
Tenha a convicção que a sua grade de licenciado não está "pesada" por estar próxima da grade do bacharel. Ela simplesmente está no nível que deve estar!
Não esqueça que um Licenciado em Matemática deve ser preparado para dar aula em todos os níveis da educação, isto é, do ensino fundamental ao superior.
É um equívoco comum entre os graduandos em Licenciatura em Matemática achar que o curso deve ser voltado para formar apenas professores de ensino fundamental e médio.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Algebra linear] Matrizes
por Souo » Sex Ago 19, 2016 19:40
- 0 Respostas
- 2833 Exibições
- Última mensagem por Souo

Sex Ago 19, 2016 19:40
Álgebra Linear
-
- [Algebra linear] Matrizes
por Souo » Sex Ago 19, 2016 19:42
- 0 Respostas
- 2959 Exibições
- Última mensagem por Souo

Sex Ago 19, 2016 19:42
Álgebra Linear
-
- [Álgebra linear] Igualdade de matrizes
por Suellem Albuquerque » Sex Mar 28, 2014 15:23
- 2 Respostas
- 2972 Exibições
- Última mensagem por Suellem Albuquerque

Seg Mar 31, 2014 11:46
Álgebra Linear
-
- Grupos e Subgrupos
por Renato_RJ » Sex Jan 21, 2011 13:18
- 4 Respostas
- 4624 Exibições
- Última mensagem por Renato_RJ

Sex Jan 21, 2011 16:39
Álgebra Elementar
-
- Teoria de grupos
por Luiz Augusto Prado » Seg Mai 30, 2011 21:37
- 1 Respostas
- 1305 Exibições
- Última mensagem por Luiz Augusto Prado

Ter Mai 31, 2011 19:21
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.