por von grap » Sex Abr 01, 2011 16:18
A pergunta é: Quantos planos ficam determinados pelos vértices de um cudo?
obs: Não encontro todos os planos. Me ajudem !!!
- Anexos
-

- digitalizar0001.jpg (57.48 KiB) Exibido 5399 vezes
-
von grap
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Seg Dez 07, 2009 15:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Sex Abr 01, 2011 16:59
Dica
Três pontos não colineares (isto é, que não estão sobre uma mesma reta) determinam um plano.
Por exemplo, os pontos A, B e C de sua figura vão determinar um plano. Já os pontos A, B e G vão determinar um outro plano.
Apenas tenha cuidado, pois no caso do cubo, por exemplo, o plano determinado por A, B e C será o mesmo que o determinado por A, B e D.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por von grap » Dom Abr 03, 2011 17:12
Valeu pela dica, mas não consigo achar os 20 planos que é a resposta do problema. A,B e G podem formar um plano? Como assim?
Será que você poderia listar alguns planos pra mim? Teria alguma outra maneira de achar esses planos?
Obrigada.
-
von grap
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Seg Dez 07, 2009 15:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por von grap » Dom Abr 03, 2011 17:26
LuizAquino escreveu:Dica
Três pontos não colineares (isto é, que não estão sobre uma mesma reta) determinam um plano.
Por exemplo, os pontos A, B e C de sua figura vão determinar um plano. Já os pontos A, B e G vão determinar um outro plano.
Apenas tenha cuidado, pois no caso do cubo, por exemplo, o plano determinado por A, B e C será o mesmo que o determinado por A, B e D.
LuizAquino escreveu:Dica
Três pontos não colineares (isto é, que não estão sobre uma mesma reta) determinam um plano.
Por exemplo, os pontos A, B e C de sua figura vão determinar um plano. Já os pontos A, B e G vão determinar um outro plano.
Apenas tenha cuidado, pois no caso do cubo, por exemplo, o plano determinado por A, B e C será o mesmo que o determinado por A, B e D.
LuizAquino escreveu:Dica
Três pontos não colineares (isto é, que não estão sobre uma mesma reta) determinam um plano.
Por exemplo, os pontos A, B e C de sua figura vão determinar um plano. Já os pontos A, B e G vão determinar um outro plano.
Apenas tenha cuidado, pois no caso do cubo, por exemplo, o plano determinado por A, B e C será o mesmo que o determinado por A, B e D.
Valeu pela dica, mas não consigo achar os 20 planos que é a resposta do problema. A,B e G formam um plano? Será que poderia listar alguns planos pra mim?
Existe alguma outra maneira de resolver este problema?
Obrigada.
-
von grap
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Seg Dez 07, 2009 15:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Elcioschin » Dom Abr 03, 2011 21:56
Basta você tentar mais um pouco, seguindo as dicas do Aquino:
ABC, ABE, ABG, ABH
ACE, ACF, ACG, ACH
Continue
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por von grap » Seg Abr 04, 2011 17:04
Elcioschin escreveu:Basta você tentar mais um pouco, seguindo as dicas do Aquino:
ABC, ABE, ABG, ABH
ACE, ACF, ACG, ACH
Continue
os planos que encontrei estão abaixo listados. Será que falta mais algum ou tem plano repetido?
ABC,ABE,ABG,ABH,ACE,ACF,ACG,ACH,ADE,ADF,ADG,ADH,AEG,AFG,AGH,
BCG,BDE,BGF,BDG,BEH.
São 20 planos ao todo, é isso mesmo?
-
von grap
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Seg Dez 07, 2009 15:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Seg Abr 04, 2011 17:51
Há planos repetidos em sua lista. Por exemplo, os planos ABG e ABH.
Eu vou listar todos os planos (distintos) contendo o ponto A: ABC, AEH, ABF, AFG, AGH, ACG, AFH.
Agora, tente fazer o resto.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Posição relativa de retas e planos - Geometria Analítica]
por Gustavo195 » Dom Abr 07, 2013 16:34
- 0 Respostas
- 2485 Exibições
- Última mensagem por Gustavo195

Dom Abr 07, 2013 16:34
Geometria Analítica
-
- [Geometria Analítica] Posição relativa entre reta e plano
por jennakusterbeck » Qui Set 20, 2012 13:52
- 4 Respostas
- 3374 Exibições
- Última mensagem por jennakusterbeck

Qui Set 20, 2012 17:18
Geometria Analítica
-
- Duvida Posição Canonica
por JoaoSilva » Dom Jun 01, 2014 14:04
- 0 Respostas
- 1114 Exibições
- Última mensagem por JoaoSilva

Dom Jun 01, 2014 14:04
Álgebra Linear
-
- [Hipérbole] Dúvida sobre a posição do eixo real.
por Matheus Brito 2014 » Ter Set 08, 2015 20:58
- 0 Respostas
- 1141 Exibições
- Última mensagem por Matheus Brito 2014

Ter Set 08, 2015 20:58
Geometria Analítica
-
- Posição do segmento AB MB
por Arnaldinho2835 » Sex Abr 11, 2014 02:15
- 0 Respostas
- 895 Exibições
- Última mensagem por Arnaldinho2835

Sex Abr 11, 2014 02:15
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.