• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integrais trigonométricas

integrais trigonométricas

Mensagempor gerson25 » Dom Abr 03, 2011 03:25

Estou com duvida no desenvolvimento da seguinte questão:

\int sen^3(mx)dx

u= cos(mx) ; du= -msen(mx)

\int sen^3mx = \int (1-cos^2mx)sen mx dx

ai estou com duvida aonde eu coloco o du, pois agora tem o -m !!!
gerson25
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Fev 23, 2011 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: integrais trigonométricas

Mensagempor MarceloFantini » Dom Abr 03, 2011 05:07

-m é constante, então basta multiplicar em cima e embaixo por ele e deixar \frac{1}{-m} fora da integral.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: integrais trigonométricas

Mensagempor gerson25 » Dom Abr 03, 2011 16:31

-m é constante, então basta multiplicar em cima e embaixo por ele e deixar \frac{1}{-m} fora da integral.


poderia por favor me mostrar como fazer, pois não entendi como fazer essa multiplicação e como consegui \frac{1}{-m} . E não seria so -m que sairia da fora da integra????
gerson25
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Fev 23, 2011 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: integrais trigonométricas

Mensagempor MarceloFantini » Dom Abr 03, 2011 17:49

\int (1 - cos^2 \, (mx) ) \, sen \, (mx) \, dx = \int (1 - \underbrace{cos^2 \, (mx)}_{u^2} ) \,\frac{ \underbrace{-m\,sen \, (mx) \, dx}_{du}}{-m}

= \frac{1}{-m} \int (1 - u^2) \, du = \frac{1}{-m} \left( u - \frac{u^3}{3} \right) + C

= \frac{1}{-m} \left( cos \, (mx) - \frac{cos^3 \, (mx)}{3} \right) + C
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: integrais trigonométricas

Mensagempor gerson25 » Dom Abr 03, 2011 18:08

Velu muito obrigado, não estava conseguindo vizualizar, muito obrigado mesmo.
gerson25
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Fev 23, 2011 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: integrais trigonométricas

Mensagempor MarceloFantini » Dom Abr 03, 2011 18:15

De nada, agora que já viu aprendeu.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59