por PHANIE » Qua Mar 30, 2011 16:07
Seja f uma função real de variável real definida por f ( x ) = -x + 2 , se -1 < x < 2 ; x^2 + ax +b , se x < ou igual -1 ou x > ou igual 2
os valores de a e b , para que o grafico de f nao tenha ruptura , são , respectivamente:
eu nao entendi como o grafico ira ter uma ruptura.... tentei montar um sistema substituindo os valores mas nao consegui achar a resposta certa.
-
PHANIE
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Mar 30, 2011 15:58
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: PATOLOGIA
- Andamento: formado
por LuizAquino » Qua Mar 30, 2011 17:59
Eis a função do exercício:

Para não ter "ruptura", se você substituir x por -1 em -x+2 e em

o resultado deve ser o mesmo. Isso também deve acontecer para x substituído por 2.
Desse modo, você terá que resolver o seguinte sistema:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por profmatematica » Qua Mar 30, 2011 18:58
F(x)=-x+2 -1<x<2 reta decrescente substitui x por -1 e 2 entao tu vais encontrar A(-1,3) e B(2,0) ok? Para que o grafico seja continuo vc deve calcular a e b de modo que as interseccoes das 2 funcoes sejam no ponto A e B entao se f(x)=x^2 +ax+b substitui x por -1 e 2 dai vc vai encontrar um sistema e resolvendo esse sistema tu vais encontrar -2 e 0
-
profmatematica
- Usuário Dedicado

-
- Mensagens: 42
- Registrado em: Sex Ago 27, 2010 13:34
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Logaritmo]-PAES UNIMONTES
por thamysoares » Sex Nov 16, 2012 10:01
- 4 Respostas
- 2118 Exibições
- Última mensagem por thamysoares

Sex Nov 16, 2012 16:34
Logaritmos
-
- CN 2004
por Georges123 » Dom Mar 24, 2013 16:45
- 2 Respostas
- 3238 Exibições
- Última mensagem por Georges123

Qui Abr 18, 2013 00:43
Aritmética
-
- Prova 1 - 2004
por admin » Sáb Jul 21, 2007 05:55
- 0 Respostas
- 1518 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:55
Cálculo Numérico e Aplicações
-
- Prova 2 - 2004
por admin » Sáb Jul 21, 2007 05:56
- 0 Respostas
- 1485 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 05:56
Cálculo Numérico e Aplicações
-
- Listas 2 e 3 - 2004
por admin » Sáb Jul 21, 2007 06:01
- 0 Respostas
- 2281 Exibições
- Última mensagem por admin

Sáb Jul 21, 2007 06:01
Cálculo Numérico e Aplicações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.