por fernandocez » Ter Mar 29, 2011 19:06
Caros amigos fiz a prova prá professor de matemática domingo, não consegui fazer quase todas questões. Já vi que tenho que estudar muito pro próximo. Essa é uma delas.
50) Uma das raízes complexas da equação x³ + 3x² + 8x - 6 = 0 é:
resp:
![1+i\sqrt[]{3} 1+i\sqrt[]{3}](/latexrender/pictures/866000504e9ad5234c1201a8c652df3f.png)
Eu tentei assim:
x³ + 3x² + 8x - 6 = 0
x [x (x - 3) + 8] - 6 = 0 Achei que (x - 3) era uma das raízes, usei o método "Briot-Ruffini " aquele que parece uma divisão no final tem que restar zero. Não dá zero.
Tentei também (a + b)(a² + 2ab + b²) e não foi. ai desisti e chutei essa e um monte das outras, mesmo assim fiz 26 pontos faltaram só 4 pontos em matemática prá passar foi quase.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Elcioschin » Ter Mar 29, 2011 19:48
fernandocez
Imagino que a questão tinha alternativas, sendo uma delas 1 + i*V3.
Você deveria tê-las colocado, pois fazem parte do enunciado
Imagino que existe um erro na questão:
Se (1 + i*V3) é raiz ----> (1 - i*V3) é outra raiz
Pelas relações de Girard, sendo m a terceira raiz ----> (1 + i*V3) + (1 - i*V3) + m = - 3/1 ----> m = - 5
Logo, a terceira raiz seria x = - 5
Aplicando Briot- Ruffini para x = - 5
...|1 ....... 3 ........ 8 ........ - 6
-5 |1 ...... -2 ....... 18 ....... - 96 ----> Resto = - 96
Logo (1 + i*V3) NÃO pode ser raiz
Por favor confira o enunciado
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por FilipeCaceres » Ter Mar 29, 2011 20:02
Ola fernando,
Vou pedir para você olhar a sua equação novamente, pois esta raiz não pertence a este polinômio.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por fernandocez » Ter Mar 29, 2011 20:29
Elcioschin escreveu:fernandocez
Imagino que a questão tinha alternativas, sendo uma delas 1 + i*V3.
Você deveria tê-las colocado, pois fazem parte do enunciado
Imagino que existe um erro na questão:
Se (1 + i*V3) é raiz ----> (1 - i*V3) é outra raiz
Pelas relações de Girard, sendo m a terceira raiz ----> (1 + i*V3) + (1 - i*V3) + m = - 3/1 ----> m = - 5
Logo, a terceira raiz seria x = - 5
Aplicando Briot- Ruffini para x = - 5
...|1 ....... 3 ........ 8 ........ - 6
-5 |1 ...... -2 ....... 18 ....... - 96 ----> Resto = - 96
Logo (1 + i*V3) NÃO pode ser raiz
Por favor confira o enunciado
Oi Elcio, realmente digitei errado, tanto o enunciado que é: x³ - 3x² + 8x -6 = 0 e a resposta certa é:
![1+i\sqrt[]{5} 1+i\sqrt[]{5}](/latexrender/pictures/631d106da9f9fabf19766ed612afecaf.png)
. Independente disso vc me ensinou como resolver, é só ir pelas alternativas e usar a relação de Girard. Desculpe e obrigado.
filipecaceres escreveu:Ola fernando,
Vou pedir para você olhar a sua equação novamente, pois esta raiz não pertence a este polinômio.
Abraço.
Oi Felipe, como falei com o Elcio digitei errado tanto a equação que é: x³ - 3x² + 8x -6 = 0, quanto a resposta. a certa é:
![1+i\sqrt[]{5} 1+i\sqrt[]{5}](/latexrender/pictures/631d106da9f9fabf19766ed612afecaf.png)
. Desculpe e obrigado.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Elcioschin » Ter Mar 29, 2011 21:13
1 + i*V5 também NÃO é raiz ---> Continua errado
Alem disso vc não atendeu ao meu pedido: NÃO postou as alternativas.
Assim fica difícil ajudá-lo
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por fernandocez » Ter Mar 29, 2011 21:22
Elcioschin escreveu:fernandocez
Eu continuo com uma dúvida. Eu usei a relação na opção (a) e deu 1 como raiz, na (b) também deu 1 como raiz, só a opção (c)
![2+i\sqrt[]{3} 2+i\sqrt[]{3}](/latexrender/pictures/230f049e37a3814fb493cc84752a6376.png)
deu -1. A (d) que é a certa deu 1 também e a (e) deu -1. Se eu usasse a relação de Girard logo na (a) já encontraria a raiz, só que a resposta taria errada por não ser a outra raiz (complexa) procurada. Tem mais alguma coisa que falta fazer pra confirmar se a raiz é a procurada?
Eu aproveitei o 1 e usei de raiz e é uma delas mesmo, ai eu fiz por Baskara e encontrei as outras duas. Mas foi sorte ser 1 uma das raízes. Na prova eu nem pensei em tentar por 1.
Outra dúvida: Sempre vai ter duas raízes simétricas?
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por FilipeCaceres » Ter Mar 29, 2011 22:00
Quando se quer encontar as raízes de um polinômio a primeira coisa a se fazer é dar uma olhada para ser se encontra alguma raiz real.
Seja,

de coeficientes reais inteiros, admite uma raiz racional
onde

e p,q sao primos entre si, entao p é divisor de

e q é divisor de

.
Ex.

Entao

e

Assim, as possíveis raizes reais seriam

Logo, encontrariamos como raiz os números

Voltando para a questão x³ - 3x² + 8x -6 = 0
logo temos que,

e

Assim teriamos que os possíveis valores seriam,

Claro que não iriamos testar todos, mas -1,1,2,3 esses valores normalmente se testa.
Por inspeção chegaremos que 1 e raiz.
Baixando o grau por Briot-Ruffini teremos,

E por Báskara teremos como raiz


Nos números complexos, as raizes vem aos pares, ou seja, se a+bi é raiz o seu conjudado também é a-bi.
Logo,x³ - 3x² + 8x -6 = 0 tem como raizes:



Espero ter ajudado.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por fernandocez » Qua Mar 30, 2011 11:43
filipecaceres escreveu:Quando se quer encontar as raízes de um polinômio a primeira coisa a se fazer é dar uma olhada para ser se encontra alguma raiz real.
Espero ter ajudado.
Com certeza ajudou muito, depois dessa aula eu não posso errar nunca mais uma questão dessa. Obrigado.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por fernandocez » Qua Mar 30, 2011 11:51
Elcioschin escreveu:1 + i*V5 também NÃO é raiz ---> Continua errado
Alem disso vc não atendeu ao meu pedido: NÃO postou as alternativas.
Assim fica difícil ajudá-lo
Oi Elcio, é que eu escrevi a equação errada também. A correta eu postei acima. Mas já tá resolvido valeu o esforço, eu aprendi com que vc postou e o felipe complementou. Obrigado e desculpa aí.
-

fernandocez
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Fev 14, 2011 15:01
- Localização: São João de Meriti - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria plana] questão concurso 2011
por fernandocez » Sáb Out 08, 2011 00:25
- 3 Respostas
- 4529 Exibições
- Última mensagem por fernandocez

Sex Mar 16, 2012 22:51
Geometria Plana
-
- [Função 2º grau] Questão concurso 2011
por fernandocez » Seg Out 03, 2011 23:06
- 2 Respostas
- 2361 Exibições
- Última mensagem por fernandocez

Ter Out 04, 2011 22:10
Funções
-
- [Expressão algébrica] Questão concurso 2011
por fernandocez » Ter Out 04, 2011 22:26
- 2 Respostas
- 1682 Exibições
- Última mensagem por fernandocez

Qua Out 05, 2011 19:22
Álgebra Elementar
-
- [Sistema equações] questão de concurso 2011
por fernandocez » Qua Out 05, 2011 22:32
- 9 Respostas
- 6072 Exibições
- Última mensagem por fernandocez

Sáb Out 08, 2011 15:33
Sistemas de Equações
-
- Questão fácil, me ajuda, concurso correios 2011 cesp, obriga
por jrmaialds » Seg Nov 12, 2012 16:40
- 2 Respostas
- 2556 Exibições
- Última mensagem por jrmaialds

Seg Nov 12, 2012 18:03
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.