• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de Inequação com Raiz

Resolução de Inequação com Raiz

Mensagempor edumstpu » Sex Mar 25, 2011 19:24

Boa noite. Estou resolvendo a seguinte expressão:
Expressão no.1:
\sqrt{15-2x} \gg x
Utilizando o método de elevar ambos os termos ao quadrado me retorna essa inequação:
Expressão no.2:
{x}^{2}+2x-15 \ll 0
Dessa inequação tiro que a solução é
]-5,3[

Porém, se eu colocar uma valor menor(por exemplo, -30) na inequação no. 1, ela é verdadeira, se eu usar o mesmo valor na inequação no.2, ela se torna falsa.
Pode-se observar que elevar ambos os "lados" da inequação altera a solução da mesma.
Gostaria de saber outra forma de resolver a mesma expressão sem esse problema.

Agradeço desde já.
edumstpu
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 25, 2011 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Re: Resolução de Inequação com Raiz

Mensagempor MarceloFantini » Sex Mar 25, 2011 20:13

Elevar ambos ao quadrado não altera a solução. O problema é que você está pegando valores que não fazem parte da solução.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resolução de Inequação com Raiz

Mensagempor edumstpu » Sex Mar 25, 2011 20:31

Certo, mas veja dessa forma:
A solução encontrada pela expressão no.2 foi:
]-5;3[

Ou seja, -30 está fora da solução.
Mas se eu colocar o -30 na expressão no.1 ela resulta verdadeira, ou seja, -30 deveria fazer parte da solução:
\sqrt{15-2\left(-30 \right)} \gg -30 \Rightarrow \sqrt{75} \gg -30

Agradeço a resposta.
edumstpu
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 25, 2011 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Re: Resolução de Inequação com Raiz

Mensagempor MarceloFantini » Sex Mar 25, 2011 21:04

É verdade, não tinha notado isso. Refletirei mais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resolução de Inequação com Raiz

Mensagempor FilipeCaceres » Sex Mar 25, 2011 22:14

Olá edumstpu

Para inequações do tipo \sqrt{a}>b
Neste caso, em primeiro lugar,devemos ter a\geq 0. Satisfeita esta condição, \sqrt{a}\geq 0. assim, se por exemplo b for negativo, a inequação estará automaticamente satisfeita.
Ex. \sqrt{x-3}\geq-5

Solução:
Desde que \sqrt{x-3} seja real, teremos \sqrt{x-3}\geq0 e portanto,
\sqrt{x-3}>-5\Rightarrow x-3\geq0 \Rightarrow x\geq3
S={{x\in\mathbb{R}|x\geq3}}

Continuando...
Se b\geq0,teremos a>b^2. Em resumo:
\sqrt{a}>b\Rightarrow\left\{\begin{matrix}
                                       a>b^2 &e&b\geq0 \\ 
                                                       ou\\
                                       a\geq0& e &b<0  
                                     \end{matrix}\right.

Resolvendo a questão:
\sqrt{15-2x}>x\Rightarrow\left\{\begin{matrix}
                                                              15-2x>x^2&e&x\geq0 (i) \\ 
                                                                     ou\\
                                                              15-2x\geq0&e&x<0  (ii)
                                                              \end{matrix}\right.

De (i) vem que:
S_1=[0,3[

De (ii) vem que:
S_2=]-\infty,0[

Desta forma teremos como resposta S=S_1\cup S_2=]-\infty,3[
Ou se você preferir S=S_1\cup S_2={{x\in\mathbb{R}|x<3}}

Espero ter ajudado.
Editado pela última vez por FilipeCaceres em Sex Mar 25, 2011 22:17, em um total de 1 vez.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Resolução de Inequação com Raiz

Mensagempor MarceloFantini » Sex Mar 25, 2011 22:16

Boa explicação Filipe.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Resolução de Inequação com Raiz

Mensagempor edumstpu » Sex Mar 25, 2011 22:27

Olá. Agradeço as respostas. A propósito, Felipe, ótima explicação, foi breve e concisa. Essa propriedade das inequações parece ser pouco conhecida, pois não a encontrei na internet. E sem dúvida sua resposta me ajudou.

Novamente, obrigado. E até outra oportunidade.
edumstpu
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 25, 2011 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?