• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso (análise comb.)

Questão prova concurso (análise comb.)

Mensagempor fernandocez » Qui Mar 24, 2011 10:20

Caro amigos matemáticos, venho com mais uma questão que não consegui resolver.

46) Em um curso de espanhol estudam vinte alunos, sendo doze rapazes e oito moças. O professor que formar uma equipe de quatro alunos para intercâmbio em outro país. O número de equipe de dois rapazer e duas moças que pode ser formadas é:
resp: 1848

Eu fiz.
C20,4 (comb. vinte quatro a quatro) = 4845
C12,4 = 495
C8,4 = 70
Somei as duas 495 + 70
Subtrair de 4845 - (495 + 70)
Fiz que nem uma outra, que era: formar equipe de três pessoas com pelo menos uma mulher. Eu fiz a combinação de todos e subtraí só os Homens.
Agora não deu certo, aonde que eu errei?
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (análise comb.)

Mensagempor LuizAquino » Qui Mar 24, 2011 10:55

Observação

Ao calcular C^{20}_4 você está contando equipes:
(i) com apenas homens;
(ii) com apenas mulheres;
(iii) com 1 homem e 3 mulheres;
(iv) com 2 homens e 2 mulheres;
(v) com 3 homens e 1 mulher.
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (análise comb.)

Mensagempor fernandocez » Qui Mar 24, 2011 11:22

LuizAquino escreveu:Observação

Ao calcular C^{20}_4 você está contando equipes:
(i) com apenas homens;
(ii) com apenas mulheres;
(iii) com 1 homem e 3 mulheres;
(iv) com 2 homens e 2 mulheres;
(v) com 3 homens e 1 mulher.


Oi Luiz, mas eu tenho que fazer a 1ª combinação contando todo mundo e depois eliminar os que não quero. Por exemplo: não quero, todos rapazes, todas moças e etc. No outro eu fiz a combinação com todo mundo e eliminei todos os homens juntos (foi isso que entendi). Tô meio perdido em combinação.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (análise comb.)

Mensagempor LuizAquino » Qui Mar 24, 2011 11:36

Número de equipes com:
(i) apenas homens: C^{12}_4 .
(ii) apenas mulheres: C^8_4 .
(iii) 1 homem e 3 mulheres: 12C^8_3 .
(iv) com 3 homens e 1 mulher: 8C^{12}_3 .
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (análise comb.)

Mensagempor fernandocez » Qui Mar 24, 2011 12:06

LuizAquino escreveu:Número de equipes com:
(i) apenas homens: C^{12}_4 .
(ii) apenas mulheres: C^8_4 .
(iii) 1 homem e 3 mulheres: 12C^8_3 .
(iv) com 3 homens e 1 mulher: 8C^{12}_3 .


Luiz, eu entendi as combinações acima. Mas não consigo montar uma prá 2 homens e 2 mulheres. Teria que fazer separado e depois multiplicar?
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (análise comb.)

Mensagempor LuizAquino » Qui Mar 24, 2011 12:19

Número de equipes com 2 homens e 2 mulheres:
(i) Uma maneira de fazer: C_4^{20} - (C^{12}_4 + C^8_4 + 12C^8_3 + 8C^{12}_3) .
(ii) Outra maneira de fazer: C_2^{12}C_2^{8} .
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso (análise comb.)

Mensagempor fernandocez » Qui Mar 24, 2011 12:23

LuizAquino escreveu:Número de equipes com 2 homens e 2 mulheres: C_4^{20} - (C^{12}_4 + C^8_4 + 12C^8_3 + 8C^{12}_3) .


Essa eu nunca ia acertar. E coisa difícil esse negócio de combinação. E deve cair pelo menos uma assim na prova do estado RJ que vou fazer domingo. Obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.