por johnlaw » Dom Mar 20, 2011 17:53
Olá pessoal,
Resolvi a seguinte inequação:

e obtive os dois resultados:
x1 = 2
x2 = 1

, essa com:
x1 = -1
x2 =

Mas não compreendo o que isso significa! Como fica esses intervalos na reta dos reais ?
Valeu!
-
johnlaw
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 06, 2010 13:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática Licenciatura
- Andamento: cursando
por LuizAquino » Dom Mar 20, 2011 18:35
Ao invés de simplesmente responder o exercício para você eu vou lhe indicar um lugar onde você pode aprender a fazê-lo sozinho.
Acesse o seguinte canal no YouTube:
http://www.youtube.com/nerckieVocê irá encontrar diversas aulas de Matemática com os conteúdos do Ensino Fundamental e Médio. Inclusive, aulas sobre inequações.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Dan » Dom Mar 20, 2011 18:59
Se a inequação deve ser maior que zero, então os possíveis valores que o x assume devem ser valores que tornem o resultado da equação maior que zero.
Você precisa analisar os gráficos das equações para chegar a essa conclusão:
Para a primeira equação teremos:

Perceba que para valores entre 1 e 2 o resultado y é negativo. Quando for igual a 1 ou 2 o resultado é zero. Portanto, devem ser considerados apenas os valores menores que 1 ou maiores que 2 para que o resultado da equação seja maior que zero, e portanto positivo.
Para a segunda equação temos:

Ou seja, o resultado y da equação só será positivo para valores entre -1 e 1/2.
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por johnlaw » Dom Mar 20, 2011 19:59
Luiz Aquino, obrigado pela dica, vou verificar os vídeos.
Dan, compreendi, muito obrigado. Mas é possível eu verificar essas condições sem fazer o gráfico ? Somente olhando para a primeira equação por exemplo, como eu concluiria que o conjunto solução está de infinito até 1 (intervalo aberto) e de 2 (intervalo aberto) até infinito ?
Muito Obrigado!
-
johnlaw
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 06, 2010 13:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática Licenciatura
- Andamento: cursando
por Dan » Dom Mar 20, 2011 20:07
Só uma correção: formalmente é um intervalo aberto de menos infinito até 1. E aberto em 2 até mais infinito.
Não precisa fazer o gráfico. Basta observa o sinal do

(se for positivo a concavidade da parábola é para cima e se for negativo a concavidade é para baixo). A partir disso você só precisa calcular as raízes e imaginar essa parábola cortando o eixo x nessas raízes. Lembrando que algumas parábolas não cortam o eixo x.
Um esboço sempre facilita essa determinação, mas se você conseguir imaginar sem se confundir, ok.
-

Dan
- Colaborador Voluntário

-
- Mensagens: 101
- Registrado em: Seg Set 14, 2009 09:44
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequação - resultado
por thivalverde » Ter Ago 16, 2011 12:07
- 1 Respostas
- 1457 Exibições
- Última mensagem por Molina

Ter Ago 16, 2011 15:09
Álgebra Elementar
-
- [Inequação] Resultado não confere.
por renanrdaros » Sáb Ago 13, 2011 18:22
- 11 Respostas
- 4985 Exibições
- Última mensagem por renanrdaros

Qua Ago 17, 2011 02:18
Álgebra Elementar
-
- Probabilidade - Dificuldades para compreender e resolver
por LadyTrilleras » Sex Out 11, 2013 16:46
- 2 Respostas
- 2144 Exibições
- Última mensagem por LadyTrilleras

Sex Out 11, 2013 18:00
Probabilidade
-
- [Limite] Limites notáveis -->compreender a propriedade usada
por Nicolas1Lane » Qua Set 25, 2013 20:11
- 2 Respostas
- 1680 Exibições
- Última mensagem por Nicolas1Lane

Qua Set 25, 2013 20:45
Cálculo: Limites, Derivadas e Integrais
-
- resultado diferente - PG
por jose henrique » Qui Set 30, 2010 23:50
- 4 Respostas
- 3067 Exibições
- Última mensagem por MarceloFantini

Ter Out 05, 2010 01:18
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.