• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão UFMG

Questão UFMG

Mensagempor Guilherme Carvalho » Qua Mar 16, 2011 16:39

Me ajudem nesse por favor

(UFMG) Seja f(x)=\frac{1}{x}. O valor da expressão \frac{f(x)-f(a)}{x-a} para x\neq a, é

a) 0
b) -1
c) -\frac{1}{ax}
d) -\frac{1}{a-x}
e) a-x
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Questão UFMG

Mensagempor MarceloFantini » Qua Mar 16, 2011 20:08

Qual foi a sua dificuldade? Poste sua tentativa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão UFMG

Mensagempor Guilherme Carvalho » Sáb Mar 19, 2011 01:13

Então eu tentei eliminar da expressão o f(a), pois ele não esta em nenhuma das respostas... tentei isso colocando o valor de f(x) na expressão mais logo acabei travando.....
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Questão UFMG

Mensagempor MarceloFantini » Sáb Mar 19, 2011 14:19

Como não tem em nenhuma resposta? Alternativas C, D e E contém o a. Pra ver se está entendendo, calcule pra mim f(a).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Questão UFMG

Mensagempor Guilherme Carvalho » Seg Mar 21, 2011 11:50

agora que percebi a relação aki, vlw pela ajuda cara

f(a)=1/a
Guilherme Carvalho
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Mar 03, 2011 12:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Questão UFMG

Mensagempor Kelvin Brayan » Ter Mar 22, 2011 00:23

O maiado eu fiz essa questão, se quiser te ensino !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}