• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Resolução integral por partes!

Dúvida Resolução integral por partes!

Mensagempor lucat28 » Sex Mar 18, 2011 14:47

Boa tarde senhores! To tendo dificudade em resolver a sequinte integral: \int_{}^{}\sqrt[]{x}Lnxdx

A minha resposta é a seguinte: \frac{2}{3}\sqrt[]{{x}^{3}}(Lnx-\frac{2}{3})+c

Sendo que a resposta que consta no gabarito é: \frac{2}{3} x   \sqrt[]{x}Lnx-\frac{4}{9}x\sqrt[]{x}+c
então queria a ajuda de você pra achar o erro.

Desde já, obrigado!
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida Resolução integral por partes!

Mensagempor LuizAquino » Sex Mar 18, 2011 16:29

Recomendo que estude sobre fatoração e radiciação. A sua resposta é a mesma do gabarito.

\frac{2}{3}\sqrt[]{{x}^{3}}\left(\ln x-\frac{2}{3}\right)+c = \frac{2}{3}\sqrt{{x}^{3}}\cdot (\ln x)- \frac{2}{3}\sqrt{{x}^{3}} \cdot \left(\frac{2}{3}\right)+c

= \frac{2}{3}\sqrt{x^2\cdot x}\ln x  - \frac{4}{9}\sqrt{x^2\cdot x} + c

= \frac{2}{3}x\sqrt{x}\ln x  - \frac{4}{9}x\sqrt{x} + c

Observação
A simplificação \sqrt{x^2} = x só pode ser feita pois no contexto dessa integral temos que x > 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida Resolução integral por partes!

Mensagempor lucat28 » Sex Mar 18, 2011 16:45

Muito obrigado Luiz...
não sei como deixei de enxergar isso, parece tão simples agora. Fiquei um tempão procurando o erro e não achava.

Valeu Luiz!
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}