• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Para que valor de x está definida a função?

Para que valor de x está definida a função?

Mensagempor Fontelles » Ter Dez 29, 2009 10:04

Para que valores de x está definida a função?
f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}}

Rapaz, acho que pra resolver isso tem que achar um termo em comum, mas nem isso eu tô conseguindo fazer.
Tentei de outra forma, considerando que sen2x-2 será sempre < 0, independente do valor de x, então para definir a equação o divisor deveria ser < 0 também, mas não cheguei em uma resposta satisfatória com o gabarito.
Ajuda ae, pessoal!
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Marcampucio » Ter Dez 29, 2009 15:51

O radicando do numerador tem de ser maior ou igual a zero

sen2x-2\geq0

sen2x\geq2

-1\leq sen2x\leq +1 \rightarrow  \sqrt{sen2x-2}\,\,\cancel{\in} R a equação não tem solução Real.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Fontelles » Ter Dez 29, 2009 19:04

Pior que não é essa a resposta, cara.
Acho que como o numerador vai sempre dar negativo, o divisor também tem de ser negativo para a raíz poder existir.
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Marcampucio » Ter Dez 29, 2009 19:33

Fontelles escreveu:Para que valores de x está definida a função?
f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}}

Rapaz, acho que pra resolver isso tem que achar um termo em comum, mas nem isso eu tô conseguindo fazer.
Tentei de outra forma, considerando que sen2x-2 será sempre < 0, independente do valor de x, então para definir a equação o divisor deveria ser < 0 também, mas não cheguei em uma resposta satisfatória com o gabarito.
Ajuda ae, pessoal!


só prá conferir:

a coisa é f(x) = \frac{\sqrt[]{sen2x - 2}}{\sqrt[]{cos2x + 3cosx - 1}} ou é f(x) = \frac{\sqrt[]{sen^2x - 2}}{\sqrt[]{cos^2x + 3cosx - 1}}

na primeira forma não tem jeito mesmo, o numeradorr não é Real.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor rvitorper » Qui Mar 17, 2011 16:25

Vi em um livro a seguinte forma para f(x):
f(x) = \sqrt[2]{\frac{sen 2x - 2}{cos 2x + 3cos x - 1}}
Dessa maneira é fácil resolver. Dado que o antecedente é menor que 0, o consequente deve ser menor que 0 também para que f(x) tenha domínio real:
cos2x + 3cosx -1 < 0
O que nos dá:
-1 \leq cos x < \frac{1}{2}
Por fim:
D = \left[ x \epsilon \Re / \frac{\pi}{3} < x < \frac{5\pi}{3} \right]
rvitorper
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 17, 2011 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Para que valor de x está definida a função?

Mensagempor Elcioschin » Qui Mar 17, 2011 17:49

Fontelles

Quando você postar uma questão e souber a resposta, por favor POSTE-A também.
Isto facilita a vida de quem pretende ajudá-lo.

O caminho do rvitorper (de colocar tudo dentro de um mesmo radical) é o caminho correto.
Vou apenas detalhá-lo um pouco mais:

1) O numerador (sen2x - 2) é sempre negativo
2) Para se ter uma radicando POSITIVO o denominador deverá ser NEGATIVO, isto é:

cos2x + 3cosx - 1 < 0

(2*cos²x - 1) + 3cosx - 1 < 0

2cos²x + 3cosx - 2 < 0 ----> O primeiro membro é uma parábola vom a concavidade voltada para cima (a = 2)

Para esta função ser NEGATIVA cosx deve estar situada entre as raízes

Discriminante ----> D = b² - 4ac ---> D = 3² - 4*2*(-2) ---> D = 25 ----> V(D) = 5

Raízes: cosx = - 2 e cosx = 1/2

Acontece que -1 < cos x < + 1


Solução - 1 < cos x < 1/2 ----> pi/3 < x < 5pi/3 ---> Exatamente a solução do rvitorper
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}