• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Modulo.

Modulo.

Mensagempor 380625 » Qui Mar 17, 2011 11:21

Bom dia gostaria que me ajudasem a provar:

|x-y|>|x|-|y|, o sinal é de maior igual.

Consegui provar elevando os dois lados ao quadrado porem, meu professor me disse que faltou justificar certas propriedades e passagens, queria saber se alguem poderia provar e me mostrar as passagens.

Grato.
Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Modulo.

Mensagempor LuizAquino » Qui Mar 17, 2011 11:33

Poste aqui todas as passagens que você fez. Desse modo, podemos identificar os problemas.

De qualquer modo, há uma estratégia algébrica para realizar a demonstração.

Considere que já tenha sido provada a Desigualdade Triangular: |x + y| \leq |x| + |y|.

Vejamos agora como demonstrar a desigualdade |x - y| \geq |x| - |y|.

|x|=|(x-y)+y| \leq |x-y|+|y|

Ou seja, temos que:
|x| \leq |x-y|+|y|

|x| - |y| \leq |x-y|

Portanto, temos que:
|x-y| \geq |x|-|y|

Observação
Demonstração da Desigualdade Triangular.

Segue da definição de módulo, que para quaisquer números reais a e b temos que:
(i) -|a|\leq a \leq |a|
(ii) -|b|\leq b \leq |b|

Somando-se os membro dessas inequações:
-(|a|+|b|) \leq a+b \leq (|a|+|b|)

Segue da definição de módulo, que se -c \leq x \leq c, com c > 0, então temos que |x|\leq c. Sendo assim, fazendo x = a + b e c = |a| + |b|, temos que:
|a+b| \leq |a|+|b|
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Modulo.

Mensagempor LuizAquino » Sex Set 09, 2011 10:47

Correção

Onde há

"Somando-se os membro dessas inequações (...)"

leia-se

"Somando-se os membros dessas inequações (...)"
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.