• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove: n(A X B) = n(A) * n(B)

Prove: n(A X B) = n(A) * n(B)

Mensagempor juliomarcos » Dom Set 14, 2008 02:58

Livro sem resposta é triste...
Se alguém puder falar se está certo pra mim, agradeço desde já.

Seja A X B, o produto cartesiano de A com B.
Prove que n(A X B) = n(A) * n(B):

A = {a1, a2, a3,..., an}
B = {b1, b2, b3,..., bn}
Adotando n(A) = n. E n(B) = m.
A X B = {(a,b) | a \in A ^ b \in B} = {(a1,b1), (a1,b2), (a1,b3),..., (a1,bn), (a2,b1), (a2,b2), (a2,b3),..., (a2,bn), (a3,b1), (a3,b2), (a3,b3),..., (a3,bn),...,(an,bn)}.
É facilmente verificado que existem m pares ordenados da forma (a1,bi), para cada a \in A. Ou seja, têm-se m um determinado número n de vezes, logo n(A X B) = n(A) * n(B).
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor admin » Ter Set 23, 2008 15:00

Olá juliomarcos!

Acredito que sua idéia esteja correta sim, mas esta "prova" não é tão comum pois trata-se de uma definição que por sua vez já é conseqüência direta de outra definição, o produto cartesiano.

Em alguns trechos você trocou m por n, mas acho que foi descuido na edição, compreendi a idéia.

Podemos também considerar, partindo da definição de produto cartesiano,
A X B = \left\{(a,b) | a\in A \wedge b\in B\right\}
uma tabela com os elementos dos conjuntos: os pares ordenados.
Estando um conjunto em linha e outro em coluna.
O número total de elementos será o produto dado pela dimensão da tabela.
É como pensar analogamente em área de retângulo.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor juliomarcos » Qua Set 24, 2008 00:59

Hmm. Interessante observação geométrica. Apresentar o produto cartesiano como uma tabela e utilizar "..." para representa-la em termos gerais é uma boa prova?
Muito Obrigado.
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor admin » Qua Set 24, 2008 05:33

Ainda assim seria algo informal.
Teríamos que novamente utilizar conclusões famosas como "é facilmente verificado que..." ou ainda "é fácil ver que...".

Notei que a multiplicação cardinal aparece com freqüência como definição e não como teorema (também é interessante um estudo sobre a diferença destas terminologias).
Por exemplo, veja neste livro:

Axiomatic Set Theory By Patrick Suppes
http://books.google.com/books?id=sxr4LrgJGeAC&pg=PA115

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}