• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove: n(A X B) = n(A) * n(B)

Prove: n(A X B) = n(A) * n(B)

Mensagempor juliomarcos » Dom Set 14, 2008 02:58

Livro sem resposta é triste...
Se alguém puder falar se está certo pra mim, agradeço desde já.

Seja A X B, o produto cartesiano de A com B.
Prove que n(A X B) = n(A) * n(B):

A = {a1, a2, a3,..., an}
B = {b1, b2, b3,..., bn}
Adotando n(A) = n. E n(B) = m.
A X B = {(a,b) | a \in A ^ b \in B} = {(a1,b1), (a1,b2), (a1,b3),..., (a1,bn), (a2,b1), (a2,b2), (a2,b3),..., (a2,bn), (a3,b1), (a3,b2), (a3,b3),..., (a3,bn),...,(an,bn)}.
É facilmente verificado que existem m pares ordenados da forma (a1,bi), para cada a \in A. Ou seja, têm-se m um determinado número n de vezes, logo n(A X B) = n(A) * n(B).
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor admin » Ter Set 23, 2008 15:00

Olá juliomarcos!

Acredito que sua idéia esteja correta sim, mas esta "prova" não é tão comum pois trata-se de uma definição que por sua vez já é conseqüência direta de outra definição, o produto cartesiano.

Em alguns trechos você trocou m por n, mas acho que foi descuido na edição, compreendi a idéia.

Podemos também considerar, partindo da definição de produto cartesiano,
A X B = \left\{(a,b) | a\in A \wedge b\in B\right\}
uma tabela com os elementos dos conjuntos: os pares ordenados.
Estando um conjunto em linha e outro em coluna.
O número total de elementos será o produto dado pela dimensão da tabela.
É como pensar analogamente em área de retângulo.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor juliomarcos » Qua Set 24, 2008 00:59

Hmm. Interessante observação geométrica. Apresentar o produto cartesiano como uma tabela e utilizar "..." para representa-la em termos gerais é uma boa prova?
Muito Obrigado.
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor admin » Qua Set 24, 2008 05:33

Ainda assim seria algo informal.
Teríamos que novamente utilizar conclusões famosas como "é facilmente verificado que..." ou ainda "é fácil ver que...".

Notei que a multiplicação cardinal aparece com freqüência como definição e não como teorema (também é interessante um estudo sobre a diferença destas terminologias).
Por exemplo, veja neste livro:

Axiomatic Set Theory By Patrick Suppes
http://books.google.com/books?id=sxr4LrgJGeAC&pg=PA115

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?