• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove: n(A X B) = n(A) * n(B)

Prove: n(A X B) = n(A) * n(B)

Mensagempor juliomarcos » Dom Set 14, 2008 02:58

Livro sem resposta é triste...
Se alguém puder falar se está certo pra mim, agradeço desde já.

Seja A X B, o produto cartesiano de A com B.
Prove que n(A X B) = n(A) * n(B):

A = {a1, a2, a3,..., an}
B = {b1, b2, b3,..., bn}
Adotando n(A) = n. E n(B) = m.
A X B = {(a,b) | a \in A ^ b \in B} = {(a1,b1), (a1,b2), (a1,b3),..., (a1,bn), (a2,b1), (a2,b2), (a2,b3),..., (a2,bn), (a3,b1), (a3,b2), (a3,b3),..., (a3,bn),...,(an,bn)}.
É facilmente verificado que existem m pares ordenados da forma (a1,bi), para cada a \in A. Ou seja, têm-se m um determinado número n de vezes, logo n(A X B) = n(A) * n(B).
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor admin » Ter Set 23, 2008 15:00

Olá juliomarcos!

Acredito que sua idéia esteja correta sim, mas esta "prova" não é tão comum pois trata-se de uma definição que por sua vez já é conseqüência direta de outra definição, o produto cartesiano.

Em alguns trechos você trocou m por n, mas acho que foi descuido na edição, compreendi a idéia.

Podemos também considerar, partindo da definição de produto cartesiano,
A X B = \left\{(a,b) | a\in A \wedge b\in B\right\}
uma tabela com os elementos dos conjuntos: os pares ordenados.
Estando um conjunto em linha e outro em coluna.
O número total de elementos será o produto dado pela dimensão da tabela.
É como pensar analogamente em área de retângulo.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor juliomarcos » Qua Set 24, 2008 00:59

Hmm. Interessante observação geométrica. Apresentar o produto cartesiano como uma tabela e utilizar "..." para representa-la em termos gerais é uma boa prova?
Muito Obrigado.
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Prove: n(A X B) = n(A) * n(B)

Mensagempor admin » Qua Set 24, 2008 05:33

Ainda assim seria algo informal.
Teríamos que novamente utilizar conclusões famosas como "é facilmente verificado que..." ou ainda "é fácil ver que...".

Notei que a multiplicação cardinal aparece com freqüência como definição e não como teorema (também é interessante um estudo sobre a diferença destas terminologias).
Por exemplo, veja neste livro:

Axiomatic Set Theory By Patrick Suppes
http://books.google.com/books?id=sxr4LrgJGeAC&pg=PA115

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.