• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos Numéricos

Conjuntos Numéricos

Mensagempor Abelardo » Qui Mar 10, 2011 13:45

45. Considere x, y e z números naturais. Na divisão de x por y obtém-se quociente z e resto 8. Sabe-se que a representação decimal de \frac{x}{y} é a dízima periódica 7,363636... Então, o valor de x + y + z é:

a)190
b)193
c)191
d)192


Só encontro 190 como resposta, mas a resposta é 191! Alguma luz, não quero que resolvam para mim, quero alguma dica.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Renato_RJ » Qui Mar 10, 2011 15:03

Abelardo, vamos ver esse problema...

\frac{x}{y} = 7,36363636... \Rightarrow \, \frac{x}{y} = 7 + \frac{36}{99}

Sabemos que:
x = z \cdot y + 8 \Rightarrow \, \frac{x}{y} = z + \frac{8}{y}

Agora, faça a substituição e veja o resultado, é 191 mesmo...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Abelardo » Sex Mar 11, 2011 22:27

Caramba, deixei a geratriz na forma de fração irredutível e nem me toquei que poderia destrinchá-la !! Valeu mesmo, consegui.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Renato_RJ » Sáb Mar 12, 2011 00:48

:y:
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.