• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinação de divisores

Determinação de divisores

Mensagempor Abelardo » Seg Mar 07, 2011 00:50

(PUC-RJ) Ache dois divisores diferentes, entre 60 e 70, do número {2}^{48}-1.




Estou estudando sobre números primos e há um tópico especial falando sobre os ''números de Mersenne''. Como o a base é 2, o seu resultado é par, mas tem a subtração que o torna um número impar..
pensei em fatorá-lo, mas não vi como. Pensei em um produto notável, mas não tem ''futuro prático'', ficaria inúmeros fatores.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Determinação de divisores

Mensagempor Renato_RJ » Seg Mar 07, 2011 15:33

Boa tarde Abelardo..

Vou dar uma dica:

x^2 - 1 = (x - 1) \cdot (x + 1)

Olha o que aconteceu com a potência de x....

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Determinação de divisores

Mensagempor Abelardo » Seg Mar 07, 2011 18:47

sei que é dividido por dois quando desenvolvemos a diferença de dois quadrados... mas e a partir dai, devo continuar com o desenvolvimento de (({2}^{24} -1)?
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Determinação de divisores

Mensagempor Renato_RJ » Seg Mar 07, 2011 18:57

Boa tarde Abelardo, vamos lá...

(2^6 - 1) \cdot (2^6 + 1)  = (2^{12} - 1) \Rightarrow \, (2^{12} - 1) \cdot (2^{12} + 1) = (2^{24} - 1) \Rightarrow \, (2^{24} - 1) \cdot (2^{24} +1 ) = (2^{48} - 1)

Arrumando tudo temos:

(2^{48} - 1) = (2^6 - 1) \cdot (2^6 + 1) \cdot (2^{12} + 1) \cdot (2^{24} + 1)

Como 2^6 = 64 sabemos que os dois divisores que se encontram no intervalo dado só podem ser (2^6 - 1) = 63 e (2^6 + 1) = 65.

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Determinação de divisores

Mensagempor Abelardo » Seg Mar 07, 2011 20:14

Valeu Renate, você sempre respondendo as minhas perguntas! Brigadão mesmo..
Consegui chegar a solução, incrivelmente (pelo menos para mim) enquanto ia comprar o pão e estava andando de bicicleta.. lembrei da fórmula para números ímpares e de que entre um par há dois primos. Já que a expressão dada é um número ímpar, então entre 60 e 70 tenho 64 como potência de 2, logo posso ter 64+1=65(ímpar) e 64-1=63(ímpar).

Valeu cara!
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.