por Abelardo » Seg Mar 07, 2011 00:50
(PUC-RJ) Ache dois divisores diferentes, entre 60 e 70, do número

.
Estou estudando sobre números primos e há um tópico especial falando sobre os ''números de Mersenne''. Como o a base é 2, o seu resultado é par, mas tem a subtração que o torna um número impar..
pensei em fatorá-lo, mas não vi como. Pensei em um produto notável, mas não tem ''futuro prático'', ficaria inúmeros fatores.
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Renato_RJ » Seg Mar 07, 2011 15:33
Boa tarde Abelardo..
Vou dar uma dica:

Olha o que aconteceu com a potência de x....
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Abelardo » Seg Mar 07, 2011 18:47
sei que é dividido por dois quando desenvolvemos a diferença de dois quadrados... mas e a partir dai, devo continuar com o desenvolvimento de (

?
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Renato_RJ » Seg Mar 07, 2011 18:57
Boa tarde Abelardo, vamos lá...

Arrumando tudo temos:

Como

sabemos que os dois divisores que se encontram no intervalo dado só podem ser

e

.
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Abelardo » Seg Mar 07, 2011 20:14
Valeu Renate, você sempre respondendo as minhas perguntas! Brigadão mesmo..
Consegui chegar a solução, incrivelmente (pelo menos para mim) enquanto ia comprar o pão e estava andando de bicicleta.. lembrei da fórmula para números ímpares e de que entre um par há dois primos. Já que a expressão dada é um número ímpar, então entre 60 e 70 tenho 64 como potência de 2, logo posso ter 64+1=65(ímpar) e 64-1=63(ímpar).
Valeu cara!
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- determinação de ponto
por wanderley argenton » Seg Mai 28, 2012 13:58
- 1 Respostas
- 3216 Exibições
- Última mensagem por LuizAquino

Seg Mai 28, 2012 17:42
Geometria Analítica
-
- Determinação de um plano
por ViniciusAlmeida » Sex Mai 29, 2015 00:07
- 0 Respostas
- 1162 Exibições
- Última mensagem por ViniciusAlmeida

Sex Mai 29, 2015 00:07
Geometria Analítica
-
- Determinação de domínio da função
por Jonatan » Qua Jul 28, 2010 13:24
- 1 Respostas
- 3089 Exibições
- Última mensagem por MarceloFantini

Qua Jul 28, 2010 14:51
Funções
-
- demonstração e determinação de raizes
por tigre matematico » Sáb Out 15, 2011 23:29
- 0 Respostas
- 926 Exibições
- Última mensagem por tigre matematico

Sáb Out 15, 2011 23:29
Polinômios
-
- [Determinaçao do Momento-Inequaçoes]
por R0nny » Sex Mai 03, 2013 15:12
- 10 Respostas
- 5098 Exibições
- Última mensagem por e8group

Sáb Mai 04, 2013 15:53
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.