• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida em Conjuntos

duvida em Conjuntos

Mensagempor Fabricio dalla » Sáb Mar 05, 2011 15:32

em uma sala de 80 alunos foi aplicada uma prova contendo 3 questoes,onde 70% acertou a primeira questão,60% a segunda questão e 40% a terceira questão.supondo que 52 alunos acertaram NO MINIMO 2 questoes e que 8 alunos acertaram nehuma das questoes.quantos alunos acertaram as 3 questoes?

obs(pow eu resolvi a resposta deu 12 so que a menina na minha sala falo que a resposta e 14!! qual a resposta?tenho quase certeza q n falta nehum dado)
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: duvida em Conjuntos

Mensagempor LuizAquino » Dom Mar 06, 2011 11:14

A: Conjunto dos alunos que acertaram a questão 1
n(A) = 70%*80 = 56

B: Conjunto dos alunos que acertaram a questão 2
n(B) = 60%*80 = 48

C: Conjunto dos alunos que acertaram a questão 3
n(B) = 40%*80 = 32

Sabe-se que 52 alunos acertaram NO MÍNIMO 2 questões. Portanto:
n(A\cap B) + n(A\cap C) + n(B\cap C) - 2n(A\cap B\cap C) = 52

Além disso, sabe-se que 8 alunos acertaram nenhuma das questões. Portanto:
n(A\cup B \cup C) = 80 - 8 = 72.

Aplicando a fórmula para a união de três conjuntos, nós temos que:
n(A) + n(B) + n(C) - n(A\cap B) - n(A\cap C) - n(B\cap C) + n(A\cap B\cap C) = 72

56 + 48 + 32 - [52 + 2n(A\cap B\cap C)] + n(A\cap B\cap C) = 72

n(A\cap B\cap C) = 12
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: duvida em Conjuntos

Mensagempor Fabricio dalla » Dom Mar 06, 2011 16:22

AEW!! ACERTEI O/
LuizAquino eu fiz de um jeito diferente vê se ta certo!?!

desenhei os 3 diagramas e dei um valor pras interseçoes,e dei o valor de x para o numero de alunos que acertaram as 3 questoes
(y-x)+(w-x)+(z-x)+(x)=52 pois ele fala q 52 alunos acertaram no minimo 2 questoes, logo inclui-se quem acertou
3 questoes.dai fiz o seguinte 80-52=28-8 alunos q erram todas as questoes tenho 20 alunos q acertaram somente uma questao das 3
dai fiz:
[56-(y-x+x+w-x)]+[48-(y-x+x+z-x)]+[32-(w-x+x+z-x)]=20 equaçao I : y+w-2x+z=52
[56-(y+w-x)]+[48-(y+z-x)]+[32-(w+z-x)]=20 [y+w+z]=52+2x X(2)
-2y-2w-2z+3x+136=20 : : 2y+2w+2z=104+4x
-2y-2w-2z+3x=-116 X(-1)
2y+2w+2z-3x=116 equaçao II
substituindo equa I na II temos
104+4x-3x=116 logo tem-se x=12
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: duvida em Conjuntos

Mensagempor LuizAquino » Dom Mar 06, 2011 17:40

Fabricio dalla escreveu:AEW!! ACERTEI O/
LuizAquino eu fiz de um jeito diferente vê se ta certo!?!

desenhei os 3 diagramas e dei um valor pras interseçoes,e dei o valor de x para o numero de alunos que acertaram as 3 questoes
(y-x)+(w-x)+(z-x)+(x)=52 pois ele fala q 52 alunos acertaram no minimo 2 questoes, logo inclui-se quem acertou
3 questoes.dai fiz o seguinte 80-52=28-8 alunos q erram todas as questoes tenho 20 alunos q acertaram somente uma questao das 3
dai fiz:
[56-(y-x+x+w-x)]+[48-(y-x+x+z-x)]+[32-(w-x+x+z-x)]=20 equaçao I : y+w-2x+z=52
[56-(y+w-x)]+[48-(y+z-x)]+[32-(w+z-x)]=20 [y+w+z]=52+2x X(2)
-2y-2w-2z+3x+136=20 : : 2y+2w+2z=104+4x
-2y-2w-2z+3x=-116 X(-1)
2y+2w+2z-3x=116 equaçao II
substituindo equa I na II temos
104+4x-3x=116 logo tem-se x=12


Tenha cuidado como você escreve a sua solução! Se você for fazer uma prova que tenha questões discursivas, provavelmente você perderia pontos (se não a questão inteira) por causa dessa bagunça!

Primeiro, temos que 80-52\neq 28-8. Você deveria ter organizado com algo como: 80 - 52 = 28 pessoas fizeram apenas 1 questão ou nenhuma delas. Desse modo, 28-8=20 pessoas fizeram apenas 1 questão.

Agora, temos a equação:
(i) y+w-2x+z=52, que é equivalente a 2y+2w+2z=104+4x.

Em seguida, temos a equação:
(ii) [56-(y-x+x+w-x)]+[48-(y-x+x+z-x)]+[32-(w-x+x+z-x)]=20, que é equivalente a equação 2y+2w+2z-3x=116.

Substituindo (i) em (ii), nós obtemos que 104+4x-3x=116, de onde calculamos que x=12.

Por fim, se você analisar direitinho as suas equações verá que a sua solução e a minha são semelhantes. A diferença básica é que eu usei a notação para número de elementos de um conjunto, enquanto que você não usou.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: duvida em Conjuntos

Mensagempor Fabricio dalla » Dom Mar 06, 2011 17:47

ok entao e prq no papel e + facil de organizar, mas blz vo especificar direito e organizar + na proxima, vlw pelas dicas!!
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.