• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual a razão da PG formada pelas medidas do triângulo

Qual a razão da PG formada pelas medidas do triângulo

Mensagempor andersontricordiano » Sex Mar 04, 2011 23:43

Os números que expressam as medidas dos lados de um triângulo retângulo podem estar, nessa ordem, em PG? Em caso afirmativo, qual é a razão dessa PG?

Por favor me ajudem a resolver esse calculo, eu não estou conseguindo calcular para que chegue a resposta. A resposta está abaixo.
Grato quem me ajudar!


Resposta q-Page-1.jpg
Resposta q-Page-1.jpg (5.48 KiB) Exibido 3223 vezes
andersontricordiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 192
Registrado em: Sex Mar 04, 2011 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Qual a razão da PG formada pelas medidas do triângulo

Mensagempor LuizAquino » Sáb Mar 05, 2011 10:20

A figura abaixo ilustra o exercício.
triangulo-retangulo-pg.png
triangulo-retangulo-pg.png (9.9 KiB) Exibido 3216 vezes


Agora tente fazer. Lembre-se do Teorema de Pitágoras.

Caso não consiga chegar a reposta, poste aqui a sua resolução para identificarmos o erro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Qual a razão da PG formada pelas medidas do triângulo

Mensagempor Renato_RJ » Seg Mar 07, 2011 19:06

Luiz, eu não consegui chegar no resultado do gabarito, eu chego no seguinte:

r = \sqrt{\frac{1}{r^2} + 1}

Usei o teorema de Pitágoras, mas parei aí.. A onde estou errando ??

Grato pela ajuda.
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Qual a razão da PG formada pelas medidas do triângulo

Mensagempor LuizAquino » Seg Mar 07, 2011 19:26

Usando o Teorema de Pitágoras, obtemos:
r^4x^2 = x^2 + r^2x^2

Dividindo toda a equação por x^2 (o que pode ser feito já que x não é nulo):
r^4 = 1 + r^2

Agora, basta resolver essa equação biquadrada.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Qual a razão da PG formada pelas medidas do triângulo

Mensagempor Renato_RJ » Seg Mar 07, 2011 19:36

Bingo !! Está aí o meu erro... :$

Sou muito grato Luiz... :y:
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.